Scaife ATLAS

CTS Library / Stomachion

Stomachion (1)

urn:cts:greekLit:tlg0552.tlg009.1st1K-grc1:1
Refs {'start': {'reference': '1', 'human_reference': 'Chapter 1'}}
Ancestors []
Children []
prev
plain textXML
next
70
ΣΤΟΜΑΧΙΟΝ

Ἀρχιμήδους Στομάχιον

Τοῦ λεγομένου Στομαχίου ποικίλαν ἔχοντος τᾶς ἐξ ὧν συνέστακε σχημάτων μεταθέσεως θεωρίαν ἀναγκαῖον ἡγησάμην πραττον του ρῶν ἐκθέσθαι, εἴς τε
διαιρεῖται, ἕκαστόν τε αὐτῶν τίνι ἐστὶν ὁμοιούμενον, ἔτι δὲ καὶ ποῖαι γωνίαι σύνδυο λαμβανόμεναι καὶ θάς, εἴρηται πρὸς τὸ τὰς ἐναρμόσεις τῶν ἐξ αὐτῶν γεννωμένων σχαμάτων γιγνώσκεσθαι, εἴτε ἐπʼ εὐθείας εἰσὶν αἱ γεννώμεναι ἐν τοῖς σχάμασι πλευραί, εἴτε καὶ
μικρῶς λείπουσαι τᾷ θεωρίᾳ λανθάνουσιν τὰ γὰρ τοιαῦτα φιλότεχνα καὶ ἐὰν ἐλάχιστον μὲν λείπηται, τᾷ δὲ θεωρίᾳ λανθάνῃ, οὐ παρὰ τοῦτʼ ἐστὶν ἔκβλητα συνίσταται.

Ἔστι μὲν οὖν ἐξ αὐτῶν οὐκ ὀλίγων σχημάτων ο διὰ τὸντον εἶναι εἰς ἕτερον τόπον τοῦ ἴσου καὶ
ἰσογωνίου σχάματος μετατιθεμε καὶ ἑτέ λαμβάνοντας. Ἐνιότε δὲ καὶ δύο σχημάτων συνάμφω ἑνὶ σχήματι ἴσων ὄντων καὶ ὁμοίων τῷ ἑνὶ σχήματι καὶ δύο σχημάτων συνάμφω ἴσων τε καὶ ὁμοίων ὄντων δυσὶ σχήμασι συνάμφω πλείονα σχήματα συνίσταται ἐκ τῆς μεταθέσεως. Προγράφομεν
οὖν τι θεώρημα εἰς αὐτὸ συντεῖνον.

71

Ἔστω γὰρ παραλληλόγραμμον ὀρθογώνιον τὸ ΖΓ, καὶ δε. ιω ΕΖ τῷ Κ, καὶ.. διήχθωσαν ἀπὸ τῶν Γ, Β αἱ ΓΚ, ΒΕ. ειωντῶνΓ ἐκβεβλήσθωσαν αἱ ΓΚ, ΒΖ καὶ συμπιπτέτωσαν κατὰ τὸ ΓΗ. Ἐπεὶ
ἴση ἐστὶν ΕΚ τῇ ΚΖ, ἴση καὶ ΓΕ, τουτέστιν ΒΖ, τῇ Ζ στε μείζων ΓΖ τῆς Ζ καὶ γωνία ἄρα ὑπὸ τῶν ΖΓ τῆς ὑπὸ τῶν ΖΓ μείζων. Ἶσοι δέ εἰσιν αἱ ὑπὸ ΗΒ, ΖΓΒ · ἡμίσεια γὰρ ὀρθῆς ἑκατέρα μείζων ἄρα καὶ ὑπὸ τῶν ΓΗΒ, ἐπεὶ ὑπὸ ΓΗΒ ἴση δυσὶ ταῖς
ἐντὸς καὶ ἀπεναντίον ταῖς ὑπὸ ΗΒ, ΗΒ, τῆς ὑπὸ τῶν ΗΓΒ ὥστε μείζων ἐστὶν ΓΒ τῆς ΒΗ. Ἐὰν ἄρα δίχα τμηθῇ ΓΗ κατὰ Χ, ἔσται ἀμβλεῖα μὲν ὑπὸ ΓΧΒ ἐπεὶ γὰρ ἴση ΓΧ τῇ ΧΗ, καὶ κοινὴ ΧΒ, δύο δυσὶν ἴσαι καὶ βάσις ΓΒ τῆς ΒΗ μείζων καὶ γωνία ἄρα τῆς
γωνίας μείζων. Ἀμβλεῖα μὲν ἄρα ὑπὸ ΓΧΒ, ὀξεῖα δὲ ἐφεξῆς. Ἡμίσεια δὲ ὀρθῆς ὑπὸ ΓΒΗ τοῦτο γάρ ἐστιν ὑποκείμενον τοῦ παραλληλογράμμου ὀξεῖα δὲ ὑπὸ ΒΧΗ. Καὶ. τι δὴ ἴση λοιπαὶ ΓΒΗ καὶ συνίσταται καὶ διαιρεῖται τοῦτο ἐπ. ον τὸν βάσιος τι
αστα ἄρα ο ΑΒανοτὴν ΓΑνῶνέχοντὸ

72
ἐπίλοιπδύνασθαι ἀρξειν ἑκτῶν τομῶν τῶν τάξιν ἐχοντ.

Τετμήσθω ΓΑ δίχα κατὰ τὸ Ε, καὶ διὰ τοῦ Ε τῇ ΒΓ παράλληλος ἤχθω ΕΖ ἔστιν οὖν τετράγωνα τὰ ΓΖ,
ΖΑ. Ἤχθωσαν διάμετροι αἱ Γ, ΒΕ, Ε, καὶ τετμήσθωσαν δίχα αἱ ΓΗ, Ε κατὰ τὰ Θ, Χ, καὶ ἐπεζεύχθωσαν αἱ ΒΘ, ΧΖ, καὶ διὰ τῶν, Κ τῇ Β παράλληλοι ἤχθωσαν αἱ Κ,Ξ. Διὰ τὸ προκείμενον ἄρα θεώρημα τοῦ ΒΓΘ τριγώνου πρὸς τῷ Θ γωνία ἀμβλεῖα, δὲ λοιπὴ ὀξεῖα
νερὸν φανερὸν δὲει.

ΣΤΟΜΑΧΙΟΝ 1 w 9
Ἀρχιμήδους 1 w 19
Στομάχιον 1 w 28
Τοῦ 1 w 31
λεγομένου 1 w 40
Στομαχίου 1 w 49
ποικίλαν 1 w 57
ἔχοντος 1 w 64
τᾶς 1 w 67
ἐξ 1 w 69
ὧν 1 w 71
συνέστακε 1 w 80
σχημάτων 1 w 88
μεταθέσεως 1 w 98
θεωρίαν 1 w 105
ἀναγκαῖον 1 w 114
ἡγησάμην 1 w 122
πραττον 1 w 129
του 1 w 132
ρῶν 1 w 135
ἐκθέσθαι 1 w 143
εἴς 1 w 147
τε 1 w 149
1 w 150
διαιρεῖται 1 w 160
ἕκαστόν 1 w 168
τε 2 w 170
αὐτῶν 1 w 175
τίνι 1 w 179
ἐστὶν 1 w 184
ὁμοιούμενον 1 w 195
ἔτι 1 w 199
δὲ 1 w 201
καὶ 1 w 204
ποῖαι 1 w 209
γωνίαι 1 w 215
σύνδυο 1 w 221
λαμβανόμεναι 1 w 233
καὶ 2 w 236
θάς 1 w 239
εἴρηται 1 w 247
πρὸς 1 w 251
τὸ 1 w 253
τὰς 1 w 256
ἐναρμόσεις 1 w 266
τῶν 2 w 269
ἐξ 2 w 271
αὐτῶν 2 w 276
γεννωμένων 1 w 286
σχαμάτων 1 w 294
γιγνώσκεσθαι 1 w 306
εἴτε 1 w 311
ἐπʼ 1 w 314
εὐθείας 1 w 321
εἰσὶν 1 w 326
αἱ 1 w 328
γεννώμεναι 1 w 338
ἐν 2 w 340
τοῖς 1 w 344
σχάμασι 1 w 351
πλευραί 1 w 358
εἴτε 2 w 363
καὶ 3 w 366
μικρῶς 1 w 372
λείπουσαι 1 w 381
τᾷ 1 w 383
θεωρίᾳ 1 w 389
λανθάνουσιν 1 w 400
τὰ 2 w 402
γὰρ 1 w 405
τοιαῦτα 1 w 412
φιλότεχνα 1 w 421
καὶ 4 w 424
ἐὰν 1 w 427
ἐλάχιστον 1 w 436
μὲν 1 w 439
λείπηται 1 w 447
τᾷ 2 w 450
δὲ 2 w 452
θεωρίᾳ 2 w 458
λανθάνῃ 1 w 465
οὐ 1 w 468
παρὰ 1 w 472
τοῦτʼ 1 w 477
ἐστὶν 2 w 482
ἔκβλητα 1 w 489
2 w 490
συνίσταται 1 w 500
Ἔστι 1 w 505
μὲν 2 w 508
οὖν 1 w 511
ἐξ 3 w 513
αὐτῶν 3 w 518
οὐκ 1 w 521
ὀλίγων 1 w 527
σχημάτων 2 w 535
ο 29 w 536
διὰ 1 w 539
τὸ 2 w 541
ν 54 w 542
τον 3 w 545
εἶναι 1 w 550
εἰς 1 w 553
ἕτερον 1 w 559
τόπον 1 w 564
τοῦ 2 w 567
ἴσου 1 w 571
καὶ 5 w 574
ἰσογωνίου 1 w 583
σχάματος 1 w 591
μετατιθεμε 1 w 601
καὶ 6 w 604
ἑτέ 1 w 607
λαμβάνοντας 1 w 618
Ἐνιό 1 w 623
τε 7 w 625
δὲ 3 w 627
καὶ 7 w 630
δύο 1 w 633
σχημάτων 3 w 641
συνάμφω 1 w 648
ἑνὶ 1 w 651
σχήματι 1 w 658
ἴσων 1 w 662
ὄντων 1 w 667
καὶ 8 w 670
ὁμοίων 1 w 676
τῷ 1 w 678
ἑνὶ 2 w 681
σχήματι 2 w 688
1 w 689
καὶ 9 w 692
δύο 2 w 695
σχημάτων 4 w 703
συνάμφω 2 w 710
ἴσων 2 w 714
τε 8 w 716
καὶ 10 w 719
ὁμοίων 2 w 725
ὄντων 2 w 730
δυσὶ 1 w 734
σχήμασι 1 w 741
συνάμφω 3 w 748
πλείονα 1 w 755
σχήματα 1 w 762
συνίσταται 2 w 772
ἐκ 2 w 774
τῆς 1 w 777
μεταθέσεως 2 w 787
Προγράφομεν 1 w 799
οὖν 2 w 802
τι 6 w 804
θεώρημα 1 w 811
εἰς 2 w 814
αὐτὸ 1 w 818
συντεῖνον 1 w 827
Ἔστω 1 w 832
γὰρ 2 w 835
παραλληλόγραμμον 1 w 851
ὀρθογώνιον 1 w 861
τὸ 4 w 863
ΖΓ 1 w 865
καὶ 11 w 869
δε 1 w 871
ι 39 w 873
ω 26 w 874
2 w 875
ΕΖ 1 w 877
τῷ 2 w 879
Κ 1 w 880
καὶ 12 w 884
διήχθωσαν 1 w 895
ἀπὸ 1 w 898
τῶν 5 w 901
Γ 2 w 902
Β 1 w 904
αἱ 2 w 906
ΓΚ 1 w 908
ΒΕ 1 w 911
ει 2 w 914
ων 16 w 916
τῶν 6 w 919
Γ 4 w 920
ἐκ 3 w 922
βεβλή 1 w 927
σθωσαν 1 w 933
αἱ 3 w 935
ΓΚ 2 w 937
ΒΖ 1 w 940
καὶ 13 w 943
συμπιπτέ 1 w 951
τωσαν 1 w 956
κατὰ 1 w 960
τὸ 5 w 962
3 w 963
ΓΗ 1 w 965
Ἐπεὶ 1 w 970
ἴση 1 w 973
ἐστὶν 3 w 978
4 w 979
ΕΚ 1 w 981
τῇ 1 w 983
ΚΖ 1 w 985
ἴση 2 w 989
καὶ 14 w 992
5 w 993
ΓΕ 1 w 995
τουτέστιν 1 w 1005
6 w 1006
ΒΖ 2 w 1008
τῇ 2 w 1011
Ζ 6 w 1012
1 w 1013
στε 1 w 1016
μείζων 1 w 1022
7 w 1023
ΓΖ 1 w 1025
τῆς 2 w 1028
Ζ 8 w 1029
καὶ 15 w 1032
γωνία 2 w 1037
ἄρα 1 w 1040
8 w 1041
ὑπὸ 1 w 1044
τῶν 7 w 1047
Ζ 9 w 1048
Γ 9 w 1049
τῆς 3 w 1052
ὑπὸ 2 w 1055
τῶν 8 w 1058
ΖΓ 2 w 1060
μείζων 2 w 1066
Ἶσοι 1 w 1071
δέ 1 w 1073
εἰσιν 1 w 1078
αἱ 4 w 1080
ὑπὸ 3 w 1083
ΗΒ 1 w 1085
ΖΓΒ 1 w 1089
ἡμίσεια 1 w 1097
γὰρ 3 w 1100
ὀρθῆς 1 w 1105
ἑκατέρα 1 w 1112
μείζων 3 w 1118
ἄρα 2 w 1121
καὶ 16 w 1124
10 w 1125
ὑπὸ 4 w 1128
τῶν 9 w 1131
ΓΗΒ 1 w 1134
ἐπεὶ 1 w 1139
11 w 1140
ὑπὸ 5 w 1143
ΓΗΒ 2 w 1146
ἴση 3 w 1149
δυσὶ 2 w 1153
ταῖς 1 w 1157
ἐντὸς 1 w 1162
καὶ 17 w 1165
ἀπεναντίον 1 w 1175
ταῖς 2 w 1179
ὑπὸ 6 w 1182
ΗΒ 4 w 1184
Η 6 w 1186
Β 10 w 1187
τῆς 4 w 1191
ὑπὸ 7 w 1194
τῶν 10 w 1197
ΗΓΒ 1 w 1200
ὥστε 1 w 1204
μείζων 4 w 1210
ἐστὶν 4 w 1215
12 w 1216
ΓΒ 3 w 1218
τῆς 5 w 1221
ΒΗ 1 w 1223
Ἐὰν 1 w 1227
ἄρα 3 w 1230
δίχα 1 w 1234
τμηθῇ 1 w 1239
13 w 1240
ΓΗ 4 w 1242
κατὰ 2 w 1246
Χ 2 w 1247
ἔσται 1 w 1253
ἀμβλεῖα 1 w 1260
μὲν 3 w 1263
14 w 1264
ὑπὸ 8 w 1267
ΓΧΒ 1 w 1270
ἐπεὶ 2 w 1274
γὰρ 4 w 1277
ἴση 4 w 1280
15 w 1281
ΓΧ 2 w 1283
τῇ 3 w 1285
ΧΗ 1 w 1287
καὶ 18 w 1291
κοινὴ 1 w 1296
16 w 1297
ΧΒ 2 w 1299
δύο 3 w 1303
δυσὶν 1 w 1308
ἴσαι 1 w 1312
καὶ 19 w 1315
βάσις 1 w 1320
17 w 1321
ΓΒ 4 w 1323
τῆς 6 w 1326
ΒΗ 2 w 1328
μείζων 5 w 1334
καὶ 20 w 1337
18 w 1338
γωνία 3 w 1343
ἄρα 4 w 1346
τῆς 7 w 1349
γωνίας 1 w 1355
μείζων 6 w 1361
Ἀμβλεῖα 1 w 1369
μὲν 4 w 1372
ἄρα 5 w 1375
19 w 1376
ὑπὸ 9 w 1379
ΓΧΒ 2 w 1382
ὀξεῖα 1 w 1388
δὲ 4 w 1390
20 w 1391
ἐφεξῆς 1 w 1397
Ἡμίσεια 1 w 1405
δὲ 5 w 1407
ὀρθῆς 2 w 1412
21 w 1413
ὑπὸ 10 w 1416
ΓΒΗ 1 w 1419
τοῦτο 1 w 1424
γάρ 1 w 1427
ἐστιν 1 w 1432
ὑποκείμενον 1 w 1443
τοῦ 4 w 1446
παραλληλογράμμου 1 w 1462
ὀξεῖα 2 w 1467
δὲ 6 w 1469
22 w 1470
ὑπὸ 11 w 1473
ΒΧΗ 1 w 1476
Καὶ 1 w 1480
τι 9 w 1483
δὴ 1 w 1485
ἴση 5 w 1488
23 w 1489
λοιπαὶ 1 w 1495
ΓΒΗ 2 w 1498
καὶ 21 w 1501
συνίσταται 3 w 1511
καὶ 22 w 1514
διαιρεῖται 2 w 1524
τοῦτο 2 w 1529
ἐπ 4 w 1531
ον 17 w 1534
τὸν 1 w 1537
βάσιος 1 w 1543
τι 10 w 1545
αστ 2 w 1548
α 121 w 1549
ἄρα 6 w 1552
ο 68 w 1553
ΑΒ 1 w 1555
αν 10 w 1557
ο 69 w 1558
τὴν 1 w 1561
ΓΑ 1 w 1563
νῶν 1 w 1566
έχον 1 w 1570
τὸ 8 w 1572
ἐπίλοιπ 1 w 1579
δύνασθαι 1 w 1587
ἀρ 1 w 1589
ξειν 1 w 1593
ἑκ 2 w 1595
τῶν 11 w 1598
τομῶν 1 w 1603
τῶν 12 w 1606
τάξιν 1 w 1611
ἐχοντ 1 w 1616
Τετμήσθω 1 w 1625
24 w 1626
ΓΑ 2 w 1628
δίχα 2 w 1632
κατὰ 3 w 1636
τὸ 9 w 1638
Ε 5 w 1639
καὶ 23 w 1643
διὰ 2 w 1646
τοῦ 6 w 1649
Ε 6 w 1650
τῇ 4 w 1652
ΒΓ 1 w 1654
παράλληλος 1 w 1664
ἤχθω 1 w 1668
25 w 1669
ΕΖ 2 w 1671
ἔστιν 1 w 1676
οὖν 3 w 1679
τετράγωνα 1 w 1688
τὰ 6 w 1690
ΓΖ 2 w 1692
ΖΑ 1 w 1695
Ἤχθωσαν 1 w 1703
διάμετροι 1 w 1712
αἱ 5 w 1714
Γ 27 w 1715
ΒΕ 2 w 1718
Ε 9 w 1720
καὶ 24 w 1724
τετμήσθωσαν 1 w 1735
δίχα 3 w 1739
αἱ 6 w 1741
ΓΗ 5 w 1743
Ε 10 w 1745
κατὰ 4 w 1749
τὰ 8 w 1751
Θ 1 w 1752
Χ 9 w 1754
καὶ 25 w 1758
ἐπεζεύχθωσαν 1 w 1770
αἱ 7 w 1772
ΒΘ 1 w 1774
ΧΖ 1 w 1777
καὶ 26 w 1781
διὰ 3 w 1784
τῶν 13 w 1787
Κ 7 w 1789
τῇ 5 w 1791
Β 26 w 1792
παράλληλοι 1 w 1802
ἤχθωσαν 1 w 1809
αἱ 8 w 1811
Κ 8 w 1812
Ξ 1 w 1814
Διὰ 1 w 1818
τὸ 10 w 1820
προκείμενον 1 w 1831
ἄρα 7 w 1834
θεώρημα 2 w 1841
τοῦ 7 w 1844
ΒΓΘ 1 w 1847
τριγώνου 1 w 1855
26 w 1856
πρὸς 2 w 1860
τῷ 3 w 1862
Θ 4 w 1863
γωνία 5 w 1868
ἀμβλεῖα 2 w 1875
27 w 1877
δὲ 7 w 1879
λοιπὴ 1 w 1884
ὀξεῖα 3 w 1889
νερὸν 1 w 1894
φανερὸν 1 w 1901
δὲ 8 w 1903
ει 6 w 1905