Εἰς τὸ η΄. Αἱ ἄρα ἀπὸ τῆς κορυφῆς ἐπὶ τὰ Α, Β, Γ ἐπιζευγνύμεναι κἀθετοί εἰσι ἐπʼ αὐτάς Νενοήσθω γὰρ χωρὶς ὁ κῶνος, καὶ ἔστω κορυφὴ μὲν αὐτοῦ τὸ Η, κέντρον δὲ τῆς βάσεως αὐτοῦ τὸ Θ, καὶ ἀπὸ τοῦ Θ ἐπὶ τὸ Α ἐπεζεύχθω ἡ ΘΑ, ἀπὸ δὲ τοῦ Η ἡ ΗΑ. Λὲγω ὅτι ἡ ΗΑ κάθετός ἐστιν ἐπὶ τὴν △E. Ἐπεὶ γὰρ ἡ ΗΘ κάθετός ἐστιν πρὸς τὸ τοῦ κύκλου ἐπίπεδον, καὶ πάντα τὰ διʼ αὐτῆς ἐπίπεδα ὥστε καὶ τὸ ΗΘΑ τρίγωνον ὀρθόν ἐστι πρὸς τὴν βάσιν. Καὶ τῇ κοινῇ τομῇ τῶν ἐπιπέδων τῇ ΘΑ πρὸς ὀρθὰς ἦκται ἐν ἑνὶ τῶν ἐπιπέδων ἡ △Ε ἡ ἄρα △Ε τῷ ΗΘΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν ὥστε καὶ πρὸς τὴν ΗΑ. Ὁμοίως δὲ δειχθήσονται καὶ αἱ ἐπὶ τὰ Γ, Β ἐπιζευγνύμεναι ἀπὸ τῆς κορυφῆς κάθετοι οὖσαι ἐπὶ τὰς △Ζ, ΕΖ. Ἐπιστῆσαι δὲ χρὴ ὅτι ἐπὶ μὲν τοῦ πρὸ τούτου καλῶς προσέκειτο τὸ δεῖν πάντως τὴν ἐγγραφομένην πυραμίδα ἰσόπλευρον ἔχειν τὴν βάσιν οὐκ ἄλλως γὰρ αἱ ἀπὸ τῆς κορυφῆς ἐπὶ τὰς τῆς βάσεως πλευρὰς ἴσαι ἡδύναντο εἶναι· ἐπὶ δὲ τοῦ προκειμένου οὐ προσέθηκεν τὸ εἶναι ἰσόπλευρον τὴν βάσιν διὰ τὸ δύνασθαι, κἂν ὁποία τις ᾖ, τὸ αὐτὸ ἀκολουθεῖν.