Ὡς Διοκλῆς ἐν τῷ Περὶ πυρίων. Ἐν κύκλῳ διήχθωσαν δύο διάμετροι πρὸς ὀρθὰς αἱ ΑΒ, Γ△, καὶ δύο περιφέρειαι ἴσαι ἀπειλήφθωσαν ἐφ᾿  ἑκάτερα τοῦ Β αἱ ΕΒ, ΒΖ, καὶ διὰ τοῦ Ζ παράλληλος τῇ ΑΒ ἤχθω ἡ ΖΗ, καὶ ἐπεζεύχθω ἡ △Ε. Λέγω ὅτι τῶν ΓΗ, ΗΘ δύο μέσαι ἀνάλογόν εἰσιν αἱ ΖΗ, Η△. Ἤχθω γὰρ διὰ τοῦ Ε τῇ ΑΒ παράλληλος ἡ ΕΚ· ἴση ἄρα ἐστὶν ἡ μὲν ΕΚ τῇ ΖΗ, ἡ δὲ ΚΓ τῇ Η△. Ἔσται γὰρ τοῦτο δῆλον ἀπὸ τοῦ Λ ἐπὶ τὰ Ε, Ζ ἐπιζευχθεισῶν εὐθειῶν· ἴσαι γὰρ γίνονται αἱ ὑπὸ ΓΛΕ, ΖΛ△, καὶ ὀρθαὶ αἱ πρὸς τοῖς Κ, Η· καὶ πάντα ἄρα πᾶσιν διὰ τὸ τὴν ΛΕ τῇ ΛΖ ἴσην εἶναι· καὶ λοιπὴ ἄρα ἡ ΓΚ τῇ Η△ ἴση ἐστίν. Ἐπεὶ οὖν ἐστιν ὡς ἡ △Κ πρὸς ΚΕ, ἡ △Η πρὸς ΗΘ, ἀλλ᾿  ὡς ἡ △Κ πρὸς ΚΕ, ἡ ΕΚ πρὸς ΚΓ· μέση γὰρ ἀνάλογον ἡ ΕΚ τῶν △Κ, ΚΓ· ὡς ἄρα ἡ △Κ πρὸς ΚΕ καὶ ἡ ΕΚ πρὸς ΚΓ, οὕτως ἡ △Η πρὸς ΗΘ. Καί ἐστιν ἴση ἡ μὲν △Κ τῇ ΓΗ, ἡ δὲ ΚΕ τῇ ΖΗ, ἡ δὲ ΚΓ τῇ Η△· ὡς ἄρα ἡ ΓΗ πρὸς ΗΖ, ἡ ΖΗ πρὸς Η△ καὶ ἡ △Η πρὸς ΗΘ. Ἐὰν δὴ παῤ ἑκάτερα τοῦ Β ληφθῶσιν περιφέρειαι ἴσαι αἱ ΜΒ, ΒΝ, καὶ διὰ μὲν τοῦ Ν παράλληλος ἀχθῇ τῇ ΑΒ ἡ ΝΞ, ἐπιζευχθῇ δὲ ἡ △Μ, ἔσονται πάλιν τῶν ΓΞ, Ξ0 μέσαι ἀνάλογον αἱ ΝΞ, Ξ△. Πλειόνων οὖν οὕτως καὶ συνεχῶν παραλλήλων ἐκβληθεισῶν μεταξὺ τῶν Β, △ καὶ ταῖς ἀπολαμβανομέναις ὑπʼ αὐτῶν περιφερείαις πρὸς τῷ Β ἴσων τεθεισῶν ἀπὸ τοῦ Β ὡς ἐπὶ τὸ Γ καὶ ἐπὶ τὰ γενόμενα σημεῖα ἐπιζευχθεισῶν εὐθειῶν ἀπὸ τοῦ △, ὡς τῶν ὁμοίων ταῖς △Ε, △Μ, τμηθήσονται αἱ παράλληλοι αἱ μεταξὺ τῶν Β, △ κατά τινα σημεῖα, ἐπὶ τῆς προκειμένης καταγραφῆς τὰ Ο, Θ, ἐφ᾿  ἃ κανόνος παραθέσει ἐπιζεύξαντες εὐθείας ἕξομεν καταγεγραμμένην ἐν τῷ κύκλῳ τινὰ γραμμήν, ἐφ᾿  ἧς ἐὰν ληφθῇ τυχὸν σημεῖον καὶ διʼ αὐτοῦ παράλληλος ἀχθῇ τῇ ΛΒ, ἔσται ἡ ἀχθεῖσα καὶ ἡ ἀπολαμβανομένη ὑπ᾿  αὐτῆς ἀπὸ τῆς διαμέτρου πρὸς τῷ △ μέσαι ἀνάλογον τῆς τε ἀπολαμβανομένης ὑπʼ αὐτῆς ἀπὸ τῆς διαμέτρου πρὸς τῷ Γ σημείῳ καὶ τοῦ μέρους αὐτῆς τοῦ ἀπὸ τοῦ ἐν τῇ γραμμῇ σημείου ἐπὶ τὴν Γ△ διάμετρον. Τούτων προκατεσκευασμένων ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι, ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν, αἱ Α, Β, καὶ ἔστω κύκλος, ἐν ᾧ δύο διάμετροι πρὸς ὀρθὰς ἀλλήλαις αἱ Γ△, ΕΖ, καὶ γεγράφθω ἐν αὐτῷ ἡ διὰ τῶν συνεχῶν σημείων γραμμή, ὡς προείρηται, ἡ △ΘΖ, καὶ γεγονέτω ὡς ἡ Α πρὸς τὴν Β, ἡ ΓΗ πρὸς ΗΚ, καὶ ἐπιζευχθεῖσα ἡ ΓΚ καὶ ἐκβληθεῖσα τεμνέτω τὴν γραμμὴν κατὰ τὸ Θ, καὶ διὰ τοῦ Θ τῇ ΕΖ παράλληλος ἤχθω ἡ ΛΜ· διὰ ἄρα τὰ προγεγραμμένα τῶν ΓΛ, ΛΘ μέσαι ἀνάλογόν εἰσιν αἱ ΜΛ, Λ△. Καὶ ἐπεί ἐστιν ὡς ἡ ΓΛ πρὸς ΛΘ, οὕτως ἡ ΓΗ πρὸς ΗΚ, ὡς δὲ ἡ ΓΗ πρὸς ΗΚ, οὕτως ἡ Α πρὸς τὴν Β, ἐὰν ἐν τῷ αὐτῷ λόγῳ ταῖς ΓΛ, ΛΜ, Λ△, ΛΘ παρεμβάλωμεν μέσας τῶν Α, Β, ὡς τὰς Ν, Ξ, ἔσονται εἰλημμέναι τῶν Α, Β μέσαι ἀνάλογον αἱ Ν, Ξ· ὅπερ ἕδει εὑρεῖν.