Εἰς τὸ λ΄. Ἡ δὲ ΚΘ ἴση ἐστὶ τῇ διαμέτρῳ τοῦ ΑΒΓ△ κύκλου | Ἐὰν γὰρ ἀπὸ τοῦ Χ ἐπιζεύξωμεν ἐπὶ τὸ σημεῖον, καθ᾿ ὃ ἐφάπτεται ἡ ΚΖ τοῦ ΑΒΓ△ κύκλου, νοούμενον τὸ Μ, ὁμοίως δὲ καὶ τὴν ΧΚ, ἐπεὶ ἴση ἐστὶν ἡ ΧΚ τῇ ΧΖ, εἰσὶν δὲ καὶ ὀρθαὶ αἱ πρὸς τῷ Μ, ἴση γίνεται καὶ ἡ ΚΜ τῇ ΜΖ. Ἀλλὰ μὴν καὶ ἡ ΖΧ τῇ ΧΘ ἴση· παράλληλος ἄρα ἡ ΧΜ τῇ ΚΘ, καὶ διὰ τοῦτο ἔσται ὡς ἡ ΘΖ πρὸς ΖΧ, οὕτως ἡ ΚΘ πρὸς ΧΜ. Διπλῆ δὲ ἡ ΘΖ τῆς ΧΖ· διπλῆ ἄρα καὶ ἡ ΚΘ τῆς ΧΜ ἐκ τοῦ κέντρου οὔσης τοῦ ΑΒΓ△ κύκλου.