Εἰς τὸ ιϚ΄. Καὶ ἐπεὶ τὸ ὑπὸ τῶν ΒΑ, ΑΗ ἴσον ἐστὶ τῷ ὑπὸ τῶν Β △Ζ καὶ τῷ ὑπὸ τῆς Α △ καὶ συναμφοτέρου τῆς △Ζ, ΑΗ διὰ τὸ παράλληλον εἶναι τὴν △Ζ τῇ ΑΗ | Ἐπεὶ γὰρ παράλληλός ἐστιν ἡ △Ζ τῇ ΑΗ, ἔστιν ὡς ἡ ΒΑ πρὸς ΑΗ, ἡ Β△ πρὸς △Ζ· καὶ διὰ τοῦτο τὸ ὑπὸ τῶν ἄκρων τῶν ΒΑ, △Ζ ἴσον ἐστὶ τῷ ὑπὸ τῶν μέσων τῶν Β△, ΑΗ. Ἀλλὰ τὸ ὑπὸ τῶν ΒΑ, △Ζ ἴσον ἐστὶ τῷ ὑπὸ τῶν Β△, △Ζ καὶ τῷ ὑπὸ τῶν Α△, △Ζ διὰ τὸ πρῶτον θεώρημα τοῦ β΄ βιβλίου τῆς Στοιχειώσεως· καὶ τὸ ὑπὸ τῶν Β∠, ΑΗ ἄρα ἴσον ἐστὶ τῷ τε ὑπὸ Β△, △Ζ καὶ τῷ ὑπὸ Α△, △Ζ. Κοινὸν προσκείσθω τὸ ὑπὸ △Α, ΑΗ· τὸ ἄρα ὑπὸ Β△, ΑΗ μετὰ τοῦ ὑπὸ △Α, ΑΗ, ὅπερ ἐστὶν τὸ ὑπὸ ΒΑ, ΑΗ, ἴσον ἐστὶ τῷ ὑπὸ Β∠, ∠Ζ καὶ τῷ ὑπὸ Α△, △Ζ καὶ ἔτι τῷ ὑπὸ Α△, ΑΗ. Εἰς τὸ κγ΄. Tὸ δὲ πλῇθος τῶν πλευρῶν τοῦ πολυγώνου μετρείσθω ὑπὸ τετράδος | Ὑπὸ τετράδος βούλεται μετρεῖσθαι τὰς πλευρὰς τοῦ πολυγώνου διὰ τὸ τοῦ κύκλου κινουμένου περὶ τὴν ΑΓ διάμετρον πάσας τὰς πλευρὰς κατὰ κωνικῶν φέρεσθαι ἐπιφανειῶν χρησίμου ἐσομένου αὐτῷ ἐν τοῖς ἑξῆς τοῦ τοιούτου. Μὴ γὰρ ὑπὸ τετράδος μετρουμένων τῶν πλευρῶν τοῦ πολυγώνου, κἂν ἀρτιόπλευρον ᾖ, οὐ πάσας δυνατὸν κατὰ κωνικῶν φέρεσθαι ἐπιφανειῶν, ὡς κατανοῆσαι ἔνεστιν ἐπὶ τῶν τοῦ ἑξαφώνου πλευρῶν· δύο γὰρ τὰς ἀπεναντίον αὐτοῦ παραλλήλους πλευρὰς κατὰ κυλινδρικῆς φέρεσθαι ἐπιφανείας συμβαίνει. Ὅπερ, ὡς εἴρηται, οὐ χρήσιμον αὐτῷ πρὸς τὰ ἑξῆς. Εἰς τὸ λ΄. Ἡ δὲ ΚΘ ἴση ἐστὶ τῇ διαμέτρῳ τοῦ ΑΒΓ△ κύκλου | Ἐὰν γὰρ ἀπὸ τοῦ Χ ἐπιζεύξωμεν ἐπὶ τὸ σημεῖον, καθ᾿ ὃ ἐφάπτεται ἡ ΚΖ τοῦ ΑΒΓ△ κύκλου, νοούμενον τὸ Μ, ὁμοίως δὲ καὶ τὴν ΧΚ, ἐπεὶ ἴση ἐστὶν ἡ ΧΚ τῇ ΧΖ, εἰσὶν δὲ καὶ ὀρθαὶ αἱ πρὸς τῷ Μ, ἴση γίνεται καὶ ἡ ΚΜ τῇ ΜΖ. Ἀλλὰ μὴν καὶ ἡ ΖΧ τῇ ΧΘ ἴση· παράλληλος ἄρα ἡ ΧΜ τῇ ΚΘ, καὶ διὰ τοῦτο ἔσται ὡς ἡ ΘΖ πρὸς ΖΧ, οὕτως ἡ ΚΘ πρὸς ΧΜ. Διπλῆ δὲ ἡ ΘΖ τῆς ΧΖ· διπλῆ ἄρα καὶ ἡ ΚΘ τῆς ΧΜ ἐκ τοῦ κέντρου οὔσης τοῦ ΑΒΓ△ κύκλου. Εἰs τὸ λβ΄. Ἔχει δὲ καὶ ἡ διάμετρος τοῦ Μ κύκλου πρὸς τὴν διάμετρον τοῦ Ν λόγον, ὃν ἔχει ἡ ΕΛ πρὸς ΑΚ | Ἐὰν γὰρ ἐπιζευχθῶσιν αἱ ΗΛ, ΓΚ, ὀρθῶν γινομένων τῶν πρὸς τοῖς Κ, Λ καὶ παραλλήλου τῆς ΑΚ τῇ ΛΕ ἰσογώνιον γίνεται τὸ ΗΛΕ τρίγωνον τῷ ΓΚΑ τριγώνῳ, καὶ διὰ τοῦτό ἐστιν ὡς ἡ ΗΛ πρὸς ΛΕ, οὕτως ἡ ΓΚ πρὸς ΚΑ. Ἀλλ᾿  ὡς μὲν ἡ ΗΛ πρὸς ΛΕ, οὕτως πᾶσαι αἱ ἐπιζευγνύουσαι τὰς τοῦ περιγεγραμμένου γωνίας πρὸς τὴν τοῦ περὶ τὸ περιγεγραμμένον κύκλου διάμετρον, ὡς δὲ ἡ ΓΚ πρὸς ΚΑ, οὕτως πᾶσαι αἱ ἐπιζευγνύουσαι τὰς τοῦ ἐγγεγραμμένου γωνίας πρὸς τὴν τοῦ ΑΒΓ△ κύκλου διάμετρον·  ὡς ἄρα πᾶσαι αἱ ἐπιζευγνύουσαι τὰς τοῦ περιγεραμμένου γωνίας πρὸς τὴν τοῦ περὶ αὐτὸ κύκλου διάμετρον, οὕτως πᾶσαι αἱ ἐπιζευγνύουσαι τὰς τοῦ ἐγγεγραμμένου γωνίας πρὸς τὴν τοῦ ΑΒΓ△ κύκλου διάμετρον. Ὡς δὲ ἡ διάμετρος πρὸς τὴν πλευράν, οὕτως ἡ διάμετρος πρὸς τὴν πλευράν, ἐπεὶ καὶ ὡς ἡ ΗΕ πρὸς ΕΛ, οὕτως ἡ ΓΑ πρὸς ΑΚ·  καὶ δι᾿  ἴσου ἄρα ὡς πᾶσαι αἱ ἐπιζευγνύουσαι πρὸς τὴν ΕΛ, οὕτως πᾶσαι αἱ ἐπιζευγνύουσαι πρὸς τὴν ΑΚ. Ἀλλ᾿  ὡς πᾶσαι πρὸς τὴν πλευρὰν τὴν ΕΛ, οὕτως τὸ ὑπὸ πασῶν καὶ τῆς ΕΛ, τουτέστι τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Μ, πρὸς τὸ ἀπὸ ΕΛ τῆς ΕΛ κοινοῦ ὕψους λαμβανομένης, ὡς δὲ πᾶσαι πρὸς τὴν ΑΚ, οὕτως τὸ ὑπὸ πασῶν καὶ τῆς ΑΚ, τουτέστι τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ν, πρὸς τὸ ἀπὸ τῆς ΑΚ κοινοῦ ὕψους πάλιν λαμβανομένης τῆς ΑΚ· ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Μ πρὸς τὸ ἀπὸ ΕΛ, οὕτως τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ν πρὸς τὸ ἀπὸ ΑΚ. Καὶ ὡς ἄρα αὐτὴ ἡ ἐκ τοῦ κέντρου τοῦ Μ πρὸς τὴν ΕΛ, οὕτως ἡ ἐκ τοῦ κέντρου τοῦ Ν πρὸς τὴν ΑΚ. Ἐναλλὰξ ὡς ἡ ἐκ τοῦ κέντρου τοῦ Μ πρὸς τὴν ἐκ τοῦ κέντρου τοῦ Ν, οὕτως ἡ ΕΛ πρὸς ΑΚ, καὶ τῶν ἡγουμένων τὰ διπλάσια, ὡς ἡ διάμετρος τοῦ Μ πρὸς τὴν διάμετρον τοῦ Ν, ἡ ΕΛ πρὸς ΑΚ. Εἰς τὸ λδ΄. Αἱ δὲ Ι, Θ εἰλημμέναι, ὥστε τῷ ἴσῳ ἀλλήλων ὑπερέχειν τὴν Κ τῆς | καὶ τὴν | τῆς Θ καὶ τὴν Θ τῆς Η | Τὸ προκείμενόν ἐστι δύο δοθεισῶν εὐθειῶν δύο μέσας ἀνάλογον εὑρεῖν ἐν ἀριθμητικῇ ἀναλογίᾳ, ὃ ταὐτόν ἐστι τῷ τῷ ἴσῳ ἀλλήλων ὑπερέχειν. Ποιητέον δὲ τοῦτο οὕτως· ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι αἱ ΑΒ, ΓΚ ἄνισοι, καὶ ἀφαιρεθείσης ἀπὸ τῆς ΑΒ ἴσης τῇ ΓΚ τῆς Β△ ἡ λοιπὴ ἡ Α△ τετμήσθω τρίχα κατὰ τὰ Ε, Ζ, καὶ τῇ μὲν ΕΒ ἴση κείσθω ἡ Η, τῇ δὲ ΖΒ ἴση ἡ Θ. Ἔσονται δὴ αἱ Θ, Η ποιοῦσαι τὸ προκείμενον. Λὲγω δὴ ὅτι καὶ ἡ ΑΒ πρὸς τὴν ΓΚ μείζονα ἢ τριπλασίονα λόγον ἔχει τοῦ ὃν ἔχει ἡ ΑB πρὸς τὴν Η. Γεγονέτω γὰρ ὡς ἡ ΑΒ πρὸς τὴν Η, οὕτως ἡ Η πρὸς ἄλλην τινὰ τὴν Λ. Καὶ ἐπεὶ ᾧ μέρει ἑαυτῆς ἡ ΑΒ ὑπερέχει τῆς Η, τούτῳ καὶ ἡ Η ἑαυτῆς ὑπερέχει τῆς Λ, τὸ δὲ αὐτὸ μέρος τῆς ΑΒ μεῖζόν ἐστι τοῦ μέρους τῆς Η, μείζονι ἄρα ὑπερέχει ἡ ΑΒ τῆς Η ἤπερ ἡ Η τῆς Λ. Τῷ δὲ αὐτῷ ὑπερέχει ἡ ΑΒ τῆς Η καὶ ἡ Η τῆς Θ· μείζονι ἄρα ὑπερέχει ἡ Η τῆς Θ ἤπερ ἡ Η τῆς Λ· ὥστε μείζων ἡ Λ τῆς Θ. Ἐὰν δὴ πάλιν ποιήσωμεν ὡς τὴν Η πρὸς τὴν Λ, οὕτως τὴν Λ πρὸς Μ, πολλῷ μείζων ἔσται τῆς ΓΚ. Καὶ ἐπεὶ τέσσαρες εὐθεῖαι αἱ ΑΒ, Η, Λ, Μ ἑξῆς ἀνάλογόν εἰσιν, ἡ ΑΒ πρὸς τὴν Μ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΑΒ πρὸς Η· ὥστε ἡ ΑΒ πρὸς τὴν ΓΚ μείζονα ἢ τριπλασίονα λόγον ἔχει ἤπερ πρὸς τὴν Η.