Πεντάγωνον μετρήσομεν οὕτως οὗ ἑκάστη πλευρὰ ι· 10 a εὑρεῖν αὐτοῦ τὸ ἐμβαδόν. ποιῶ οὕτως· τὰ ι ἐφʼ ἑαυτά, γίνονται ρ· ταῦτα ποιῶ πεντάκις, γίνονται φ· ὧν γʹ ρξς ??· ἔσται τὸ ἐμβαδὸν ρξς ??. Εὑρεῖν δὲ καὶ τοῦ περιγραφομένου κύκλου τὴν b διάμετρον· ἔσται ιζ· ποιῶ δὲ οὕτως· τὰ ι τῆς πλευρᾶς ἐπὶ τὰ ιζ, γίνονται ρο· ταῦτα μερίζω ἐπὶ τὰ ι, γίνονται ιζ· ἔσται ἡ διάμετρος τοῦ περιγραφομένου κύκλου ιζ. Ἑξάγωνον δὲ μετρήσομεν οὕτως. ἐὰν ἔχῃ τὴν διάμετρον 11 a ξ, ἡ δὲ πλευρὰ λ, ποιῶ οὕτως· τὰ λ ἐφʼ ἑαυτῇ, γίνονται ??· ταῦτα ποιῶ ἑξάκις, γίνονται ευ· ὧν τρίτον καὶ δέκατον, γίνονται βτμ· τοσοῦτον ἔσται τὸ ἑξάγωνον. Ἄλλως δὲ. πάλιν τὴν πλευρὰν ἐφʼ ἑαυτήν, γίνονται b ταῦτα πολυπλασίαζε ἐπὶ τὰ ιγ, γίνονται α. αψ· ἄρτι μερίζω· ὧν εʹ, γίνονται βτμ· τοσοῦτον ἔσται τὸ ἐμβαδσν. Ἔστω ἑπτάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον, οὗ 10a Geep. 75, 1 (cf. Geom. 102, 2). — 10 b = Geep. 75, 2. — 11a Geep. 76 (cf. Geom. 102, 4). — 11 b = Geep. 77 (cf. Geom. 102, 3). — 12. Geom. 102, 5. 1 κη] κ A. 5 ἄλλως addidi. 11 ρξϚ prius) ρξ A. 18 ??] A. 21 α] δϋ A. ἑκάστη πλευρὰ ι· εὑρεῖν αὐτοῦ τὸ ἐμβαδόν. ποιῶ οὕτως· τὰ ι ἐφʼ ἑαυτά, γίνονται ρ· καὶ τὰ ρ ἐπὶ μγ, γίνονται δτ· ὧν τὸ ιβʹ, τμη γʹ· τοσοῦτον ἔσται τὸ ἐμβαδόν. 13a