Ἔστω σφαῖρα ἔχουσα τὴν διάμετρον ι· εὑρεῖν αὐτῆς τὴν ἐπιφάνειαν. ποίει οὕτως· τὰ ι ἐφʼ ἑαυτά, γίνονται ρ· ταῦτα ἐπὶ τὰ ια, γίνονται αρ· τούτων τὸ ιδʹ, οη U+2220΄ ιδʹ· ταῦτα τετράκις, γίνονται τιδ δʹ κη· τοσοῦτον ἡ ἐπιφάνεια τῆς σφαίρας. Τὸ δὲ πλινθίον συνέστηκεν ἐπὶ τῶνδε τῶν ἀριθμῶν· Ϛ, η, θ, ιβ ὁ μὲν οὖν η πρὸς τὸν ϛ ἐν ἐπιτρίτῳ λόγῳ, καθʼ ἣν ἡ διὰ τεσσάρων ἐστὶν ἁρμονία· ὁ δὲ ιβ πρὸς τὸν ϛ ἐν διπλασίῳ, καθʼ ἣν ἡ διὰ πασῶν ἕξεων ἔλεγχοι καὶ τῆς ἀναλογίας ἀριθμητικῆς μὲν ἐκ τῶν ϛ καὶ θ καὶ ιβ· οἷς γὰρ ἂν ὑπερέχῃ ὁ μέσος τοῦ πρώτου, τοσούτοις ὑπερέχεται τοῦ τελευταίου. γεωμετρικὴ δὲ ἡ τῶν τεσσάρων· ὃν γὰρ λόγον ἔχει τὰ η πρὸς τὰ ϛ, τοσοῦτον τὰ ιβ πρὸς τὰ θ ὁ δὲ λόγος ἐπίτριτος. 9a Ἡμικυκλίου λώρου τοῦ λεγομένου ἡ διάμετρος ζ καὶ τὰ πάχη ἀνὰ β. σύνθες τὴν διάμετρον καὶ τὰ δύο πάχη, γίνονται ια· ταῦτα ἐφʼ ἑαυτά, γίνονται ρκα· ἀπὸ τούτων ὕφειλον τὴν διάμετρον ἐφʼ ἑαυτήν, γίνονται μθ, λοιπὸν οβ· ταῦτα ἐπὶ τὰ ια, γίνονται ψ ??β· τούτων 6. Cf. Geom. 93, 2 et 8 — 7 Ster. l, 5. — 8 = Ster. l, 30. 5 τὸ κάθετον A. Lacunam statui (item infra l. 17 et 22). τὸ κηʹ, γίνονται κη δʹ κηʹ· τοσοῦτον τὸ ἐμβαδὸν τοῦ λώρου. ἄλλως . σύνθες τὴν διάμετρον καὶ τὸ ἓν πάχος, b γίνονται θ· ταῦτα ἐπὶ τὰ ια, γίνονται ??θ· τούτων τὸ ζʹ, γίνονται ιδ ζʹ· τοσοῦτον ἡ περίμετρος ἐν τῷ μέσῳ· ταῦτα ἐπὶ τὸ πάχος, ἐπὶ τὰ β, γίνονται κη δʹ κη΄. Μέθοδος τῶν πολυγώνων.