ἐὰν γὰρ προχειρισώμεθα τὴν μονάδα, καὶ ὡς ἀπὸ γωνίας αὐτῆς λάβδωμά τι καταγράψωμεν, καὶ τὴν μὲν τῶν πλευρῶν αὐτοῦ τοῖς συνεχέσι μονάδι ἀριθμοῖς ἐφεξῆς συμπληρώσωμεν μέχρι βουλόμεθα, οἷον βʹ γʹ δʹ εʹ ϛʹ ζʹ καὶ ἐφοσονοῦν, τὴν δὲ ἀπὸ τοῦ μεγίστου τῶν μερῶν ἀρξάμενοι, ὅπερ ἐστὶν ἡμίσους τοῦ προσεχεστάτου τῷ ὅλῳ κατὰ μέγεθος, συνεχέσι καὶ αὐτοῖς ἐφεξῆς γῳ δῳ εῳ Ϛῳ ζῳ καὶ ἐφοσονοῦν, τὴν εἰρημένην ἀντιπεπόνθησιν ὀψόμεθα καὶ φυσικὴν συνάρτησιν καὶ εὔτακτον σχέσιν, οἷον τοιαύτην. ἐπεὶ εἰς δύο τὸ ὅλον ἐμερίσθη, ἥμισυ παρωνομάσθη καὶ συνεζύγη οὕτως τὸ ἥμισυ τῷ δύο· πάλιν ὅτι εἰς τρία τρίτον, καὶ εἰς τέσσαρα τέταρτον, καὶ ἐφεξῆς μέχρις ἑκατοστοῦ καὶ χιλιοστοῦ καὶ μυριοστοῦ, καὶ ἐντεῦθεν ἡ τῆς ἐπ’ ἄπειρον τομῆς ἀνάγκη διὰ τὴν παρέκτασιν τοῦ ὁμολογουμένως ἐπ’ ἄπειρον αὐξητοῦ παρεισβιάζεται. καὶ ἔτι ὡς δὶς ἓν δύο, οὕτως ἡμισάκις ἓν ἥμισυ· καὶ ὡς δὶς δύο τέσσαρα, οὕτως ἡμισάκις ἥμισυ τέταρτον· καὶ ὡς δὶς δύο δίς, οὕτως ἡμισάκις ἥμισυ ἡμισάκις, ὀκτώ τε καὶ ὄγδοον· καὶ ὡς δὶς τρία ἕξ, οὕτως ἡμισάκις τρίτον ἕκτον. καὶ καθάπαξ δὲ ὅ τι ἂν ἀφ’ ἑκατέρου λάβωμεν, ἐν αὐτῷ ἐκείνῳ ὁ λόγος μένει, καὶ ἐφ’ ἑκάστου τῶν ἀριθμῶν ὅσα ἂν ἁπλῶς συμβαίνῃ, ταῦτα ἐκ παντὸς καὶ ἐπὶ τῶν ἀντιστρόφων μερῶν εὑρεθήσεται ἀναλογίᾳ. προληπτέον δέ, ὡς χρήσιμον εἰς τὰ ἑξῆς ἐσόμενον, τοῦτο· ὅτι παρωνυμούντων ἁπάντων μερῶν ἅπασιν ἀριθμοῖς, μόνον τὸ ἥμισυ τῷ δύο πράγματι μέν, οὐκέτι δὲ καὶ ὀνόματι παρωνυμεῖ· ἐπέλιπε γὰρ ἐν τῇ λέξει τοῦτο, ὥσπερ καὶ ἄλλα πολλά. γένεσις δὲ περισσοῦ καὶ ἀπὸ μονάδος, καὶ κατὰ σύνθεσιν ἀδιάζευκτον οὐχὶ τὴν σωρηδὸν ἀλλὰ τὴν κατὰ συνδυασμόν, ἥν τινες συζυγικὴν καλοῦσιν, οἷον ἓν πρῶτον, εἶτα αʹ βʹ, εἶτα πάλιν βʹ γʹ καὶ γʹ δʹ πάλιν, ἐφεξῆς ὁμοίως· ἀρτίου δέ, κατ’ ἐμπλοκήν, ὡς αʹ γʹ, βʹ δʹ, γʹ εʹ, δʹ ϛʹ καὶ ἐφοσονοῦν, ἵνα ὡς εἰδοποιὸς ἀρτίου καὶ στοιχεῖον ἡ δυάς, ἀλλ’ οὐχ ὡς ἐνεργείᾳ ἄρτιος, παραλείπηται· ἢ ἑτέρως, ἑκάστου τῶν ἀπὸ μονάδος ἀριθμῶν διπλασιαζομένου, ὡς δὶς ἓν καὶ δὶς δύο καὶ ἐφεξῆς δὶς τρία, δὶς τέσσαρα, δι’ οὗ τρανοῦται μᾶλλον ἡ προταχθεῖσα εἰδοποίησις ὑπὸ δυάδος τοῦ ἀρτίου. καὶ ἐξ ἀλλήλων δ’ ἂν γένοιτο οὕτως πρὸς ἔμφασιν τῆς τοῦ ἀριθμοῦ ἰδιότητος· τῶν γὰρ ἑκατέρωθεν ἑκάτερος ἑτερογενῶν ἅμα ἥμισυς. καὶ τὸ θαυμασιώτατον, καὶ μονάδος ἴδιον καὶ συμβιβαστικὸν τοῦ μήπω ἀριθμὸν αὐτὴν εἶναι, ὅτι ἑτέρωθεν μόνον ἀλλ’ οὐχὶ ἀμφοτέρωθεν περιεχομένη, μόνης τῆς δυάδος ἡμίσειά ἐστιν, ἀρκουμένη τῷ ἑνὶ γείτονι. οὕτως δυνάμει πάντα ἐν αὐτῇ θεωρεῖται κοινῶς τά τε ἀρτίου καὶ περισσοῦ εἴδη ὡς πηγῇ τινι καὶ ἀμφοτέρων ἀδιακρίτῳ ῥίζῃ καὶ ἀναγκαίως ἀδιαιρέτῳ παρὰ τὰ ἄλλα πάντα. καὶ γὰρ τῶν βιαζομένων μονάδα διαιρεῖν καὶ παρατιθέντων αὐτῇ ἐκ θατέρου τὸ ἥμισυ ὡς ἓν ποσὸν καὶ ὁμογενὲς συνεχές, κωλυτικὸν γίνεται τὸ συζυγούντων ταῖς παρωνυμίαις τῶν ὑπὲρ αὐτὴν ἀριθμῶν ἀπάντων τοῖς καθ’ ἕκαστον ἀντιθέτοις μέρεσιν, αὐτὴν μόνῳ τῷ ὅλῳ ἀντιδιαστέλλεσθαι, καὶ τὸ σύγχυσιν ἔσεσθαι πάντως τῶν δύο γενικῶν τοῦ ἀριθμοῦ εἰδῶν εἰ καὶ τὸ περισσὸν φαίημεν τέμνεσθαι, καὶ πάλιν τὸ οἷόν τ’ εἶναι [παριστάνειν ἀναγκαῖον] μᾶλλον αὐτῇ ἡμίσους τὸ οὐδὲν ἐπὶ τὸ ἔλαττον παρατιθέναι, ὅπερ πολλαχοῦ ἀκόντων ἡμῶν φαίνεται ἐγκρῖνον ἑαυτὸ τῇ τῆς θεωρίας φύσει καὶ ἐνθάδε μὲν ἐν τῷ τῶν ἑκατέρωθεν ἅμα ἡμίσειαν εἶναι καὶ τὴν μονάδα δυάδος καὶ τοῦ οὐδέν, καθὰ καὶ οἱ λοιποὶ ἀριθμοὶ τῶν ἑκατέρωθεν ἕκαστος ἅμα ἥμισυς ἐφαίνετο· κἀκεῖ δὲ πολὺ μᾶλλον καὶ ἐναργέστερον ὅταν τοῦ θʹ τετραγώνου πρωτίστου μετὰ τῶν δυνάμει ὄντος περισσοῦ, ἐν τῇ μεσότητι, τουτέστι τῷ πέντε, ἀναφαίνηται ὁ τῆς δικαιοσύνης λόγος κατ’ ἀριθμητικὴν ἀναλογίαν συζύγως ἀμειβόμενος καὶ ὡς ἀφορίζονται οἱ Πυθαγορικοὶ δικαιοσύνην λέγοντες δύναμιν ἀποδόσεως τοῦ ἴσου καὶ προσήκοντος ἐμπεριεχομένην ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι. ἐκτεθέντων γὰρ στιχηδὸν τῶν ἀπὸ μονάδος μέχρις ἐννεάδος ἀριθμῶν, ὁ πέντε μέσος τοὺς μὲν ἐντὸς ἑαυτοῦ ἔλαττον ἢ προσῆκον ἔχοντας διορίσει, τοὺς δ’ ὑπὲρ αὐτὸν πλεονεκτοῦντας καὶ κατὰ πρόβασίν γε· τοὺς γὰρ μᾶλλον τῇ ἐννεάδι ἐγγίζοντας ἀεί, τοὺς δὲ τῇ μονάδι ἀεὶ ἔλαττον· προσήκει τε ἑκάστῳ κατά γε τὸν τῆς ἰσότητος λόγον τὸ τοῦ πεντεκαιτεσσαράκοντα τῶν ὅλων συστήματος ἔννατον, ὅπερ αὐτόθεν τῇ μεσότητι τοῦ πλέον καὶ ἔλαττον μόνῃ ἐμφαίνεται, ἐπεὶ καὶ ἡ δικαιοσύνη καὶ ἄλλαι ἀρεταὶ μεσότητες τούτων, ἀλλ’ οὐχ ἕτερόν τι εὑρίσκονται οὖσαι. διὰ τοῦτο ὅσῳ παρὰ τὸ καθῆκον