ε΄. Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἢ ἐπὶ τὸ κέντρον ἢ ἐπὶ τῆς περιφερείας ἢ ἐκτὸς τῆς περιφερείας θῇς τὸ ὄμμα, τουτέστι μεταξὺ τοῦ κέντρου καὶ τῆς περιφερείας, αἱ ὄψεις ἀνακλώμεναι συμπεσοῦνται. ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ∠, κέντρον δὲ τῆς σφαίρας τὸ Β, καὶ κείσθω τὸ ὄμμα ἐπὶ τοῦ Β, καὶ προσπιπτέτωσαν ἀπὸ τοῦ Β ὄψεις πρὸς τὴν περιφέρειαν αἱ ΒΑ, ΒΓ, Β∠. ἴσαι ἄρα εἰσὶν αἱ πρὸς τοῖς σημείοις τοῖς Α, ∠, Γ γωνίαι· ἡμικυκλίου γάρ εἰσιν. αἱ ἄρα ὄψεις ἀνακλώμεναι διʼ ἑαυτῶν ἀνακλασθήσονται αἱ ΒΑ, ΒΓ, Β∠ τοῦτο γὰρ δέδεικται. ὥστε συμπεσοῦνται κατὰ τὸ Β. ἔστω πάλιν κοῖλον ἔνοπτρον τὸ ΑΓΒ, ὄμμα δὲ τὸ Β, 1. ΗΖ] Ζ M. 2. Post ἑκάτερα add. κατὰ τὰ Θ, Κ σημεῖα καί m, m. rec V. Post ἴση ras. 1 litt. V. Κ — 3. Λ] μὲν ὑπὸ ΒΖΘ γωνία (om. V) τῇ ὑπὸ ∠ΖΚ, ἡ δὲ ὑπὸ ΒΗΘ τῇ ὑπὸ ΕΗΚ m, m. rec V. 3. εἴη — 7. ἐστίν] μείζων δὲ ἡ ὑπὸ ΒΖΘ γωνία τῆς ὑπὸ (ΒΖΘ — ὑπό postea add. m) ΒΗΘ, εἴη ἂν καὶ ἡ ὑπὸ ∠ΖΚ μείζων τῆς ὑπὸ ΕΗΚ m, m. rec V. 4. ἐστιν v. 5. μεῖζον v, corr. m. 2. ἐστίν V v. 6 μείζονα v, corr. m. 2. 8. Ζ ∠] ∠Ζ m. 9 ε΄] η΄ Vv. 10. τὸ κέντρον] τοῦ κέντρου m, m. rec. V. 11 θῇς] θεῖς V, κείσθω δὲ ἐπὶ τῆς περιφερείας αὐτοῦ, καὶ ἀπὸ τοῦ Β προσπιπτέτωσαν ὄψεις αἱ ΒΓ, ΒΑ ἀνακλώμεναι ἐπὶ τὰ ∠, Ε σημεῖα. ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος, μείζων ἡ Ζ γωνία τῆς γωνίας. καὶ ἡ ἄρα τῆς Κ μείζων. αἱ ἄρα Ζ, τῶν Θ, Κ μείζους εἰσίν. λοιπὴ ἄρα ἡ Λ τῆς Μ ἐλάσσων· πολλῷ μᾶλλον ἄρα τῆς Ν. συμπεσοῦνται ἄρα αἱ Γ∠, ΑΕ κατὰ τὸ Ξ ὁμοίως δειχθήσεται, κἂν ἐκτὸς τῆς περιφερείας πίπτῃ τὸ ὄμμα, ὡς ἐπὶ τοῦ ἑξῆς θεωρήματος. Ϛ΄. Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἀνὰ μέσον τοῦ κέντρου καὶ τῆς περιφερείας θῇς τὸ ὄμμα, ὁτὲ μὲν συμπεσοῦνται αἱ ὄψεις ἀνακλώμεναι, ὁτὲ δὲ οὐ συμπεσοῦνται. ἔστω ἔνοπτρον κοῖλον τὸ ΑΓ, κέντρον δὲ αὐτοῦ τὸ ∠, ὄμμα δὲ κείσθω τὸ Β μεταξὺ τοῦ κέντρου καὶ τῆς περιφερείας, ὄψεις δὲ αἱ ΒΑ, ΒΓ ἀνακλώμεναι ἐπὶ τὰ Η, Ζ, καὶ ἐκβεβλήσθωσαν αἱ ὄψεις ἕως τοῦ ἐνόπτρου αἱ ΑΘ, ΓΚ. ἡ ΑΘ δὴ τῆς ΓΚΘ ἢ μείζων ἐστὶν ἢ ἴση ἢ ἐλάσσων. εἰ μὲν οὖν ἴση ἐστὶν ἡ ΑΘ ὄψις τῇ ΓΚ ὄψει, ἴση ἐστὶ καὶ ἡ ΑΓΘ περιφέρεια τῇ ΓΘΚ περιφερείᾳ. ὥστε καὶ ἡ Μ γωνία τῇ Ξ· αἱ γὰρ τῶν ἴσων περιφερειῶν γωνίαι ἴσαι εἰσὶν ἀλλήλαις. καὶ αἱ Μ, Λ γωνίαι ἄρα ταῖς Ν, Ξ εἰσιν ἴσαι διὰ τὴν ἀνάκλασιν. 1. δέ] om. M 3. Post ἐπεί add. οὖν m, m. rec. V. μείζων v Deinde add. ἐστιν m, m rec. V. ΒΓ τμήματος] κύκλουματος M. 4. Post μείζων add. ἐστίν m. 2 m. καί — 5. μείζων] διὰ τὰ αὐτὰ δὴ καὶ ἡ ΚΗ (corr. in Κ τῆς Η) μείζων ἐστίν m. 4. Η] mut. in Κ m. rec. supra scr. διὰ τὸ πρῶτον V; Η διὰ τῆς α΄ Mv. 5. ἄρα (pr.)] del. m. rec V. Κ (pr.)] mut. in m. rec. V. Post μείζων add. ἐστί m. rec. V. Ζ, Η] ΖΕ M, et V, corr m. 1; ΖΚ m, m. rec. V. τῶν] τῆς M. Θ, Κ] mut. in Θ, m. rec. V. 6 εἰσί M. καὶ λοιπὴ ἄρα ἡ Ο τῇ Π ἴση ἐστίν. μείζων ἄρα ἡ Ρ τῆς Ο. ἐπεὶ γὰρ ἡ Ρ γωνία τῆς Π μείζων ἐστὶ διὰ τὸ ἐκτὸς εἶναι, ἡ δὲ Π τῇ Ο ἴση, καὶ ἡ Ρ ἄρα τῆς Ο μείζων ἐστίν. κοινὴ προσκείσθω ἡ ὑπὸ ΟΡΖ. συμπεσοῦνται ἄρα αἱ ΓΖ, ΑΗ ὡς ἐπὶ τὰ Η, Ζ. τὸ δʼ αὐτὸ ἔσται, κἂν μείζων ἡ ΑΘ ὄψις τῆς ΓΚ· μείζονες γὰρ ἔσονται αἱ Λ, Μ γωνίαι τῶν Ν, Ξ, ἡ δὲ Π τῆς Ο μείζων ἔσται καὶ ἡ Ρ τῆς Ο. ἐὰν δὲ ἡ ΑΘ εὐθεῖα ἐλάσσων τῆς ΓΚ, διὰ τὰ αὐτὰ μείζων ἔσται ἡ Ο γωνία τῆς Π. ἔστι δὲ καὶ ἡ τῆς Π μείζων. οὐδὲν ἄρα κωλύει ἴσην εἶναι τὴν Ρ τῇ Ο ἢ ἐλάσσονα τῆς Ο, καὶ μὴ συμπίπτειν τὴν ΑΗ τῇ ΓΖ. φανερὸν δέ, ὅτι, κἄν τε μείζων ᾖ ἡ ΑΘ περιφέρεια τῆς ΓΚ, ἐάν τε ἴση, ἡ σύμπτωσις τῶν ἀνακλάσεων οὔτε ἐπὶ τῆς περιφερείας τοῦ κύκλου οὔτε ἐκτὸς οὐ μὴ γίνηται, ἀλλʼ ἐντὸς μόνον. ζ΄. Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν ἐπιπέδων ἐνόπτρων ἀνεστραμμένα φαίνεται. ἔστω ὕψος μὲν τὸ ΑΕ, ἔνοπτρον δὲ ἐπίπεδον τὸ ΑΛ, ὄμμα δὲ τὸ Β, ὄψεις δὲ αἱ ΒΓ, Β∠ ἀνακλώμεναι ἐπὶ τὰ Ε, Κ. οὐκοῦν φαίνεται ἐκβληθεισῶν τῶν ὄψεων ἐπʼ εὐθείας τὸ μὲν Ε τὸ ἄνω ἐπὶ τοῦ Θ κάτω ὄντος, τὸ δὲ Κ κάτω ὄν ἐπὶ τοῦ Ζ τοῦ ἄνω ὄντος. ὥστε ἀνεστραμμένα ἐστὶ τῇ φαντασίᾳ. 1. ἐστί Mm. 3. ἐστίν Vv. 4. ἐστί Mm, comp. v. 5. ΟΡΖ] ΡΟΖ M. Deinde add. ὁμοίως τῷ πρὸ τούτου θεωρήματι ἀποδείκνυται Vm. αἱ] αἱ ἄρα M. 6. ἔσται] ἐστι M. 8. ἔσται] ἐστί M. 9 ΓΚ] Γ∠ M. 10. ἔσται] ἐστίν M. ἔστι] ἔστιν Vv. 12. ἐλάττονα M. ΑΗ] ΑΚ M. 17. ζ΄] ια΄ Vv. 22. φαίνεται] om. m. 23 τό (pr.)] φαίνεται τό m. 24. ὄν] ὄν τοῦ Ο m, m. rec. V. τοῦ (alt.)] del. m. rec. V, om. m. ὄντος] ὄντος τοῦ Θ m, m. rec. V. 25. ἐστίν Vv, εἰσί m. ἔστω πάλιν βάθος μὲν τὸ ΕΑ, ἔνοπτρον δὲ ἐπίπεδον τὸ ΑΓ, ὄμμα δὲ τὸ ∠, ὄψεις δὲ αἱ ∠Γ, ∠Β ἀνακλώμεναι ἐπὶ τὰ Ε, Ζ. ὁμοίως τῶν ὄψεων ἐκβληθεισῶν ἐπὶ τὰ Θ, Κ φανεῖται τὸ μὲν Ε κάτω ὄν ἐπὶ τοῦ Θ ἄνω ὄντος, τὸ δὲ Ζ ἄνω ὄν ἐπὶ τοῦ Κ κάτω ὄντος. η΄. Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κυρτῶν ἐνόπτρων ἀνεστραμμένα φαίνεται. ἔστω ὕψος τὸ ΑΕ, ἔνοπτρον δὲ κυρτὸν τὸ Α∠Γ, ὄψεις δὲ αἱ Β∠, Β ἀνακλώμεναι ἐπὶ τὰ Ε, Θ. δέδεικται, ὅτι οὐ συμπεσοῦνται. τὰ δὲ λοιπὰ ὁμοίως τοῖς ἐν τοῖς ἐπιπέδοις. ἔστω πάλιν βάθος τὸ ΑΕ, ἔνοπτρον δὲ κυρτὸν τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι ἐπὶ τὰ Ε, Θ αἱ ΒΓΕ, Β∠Θ. τὰ δὲ λοιπὰ καθάπερ ἐν τοῖς ἐπιπέδοις. θ΄. Τὰ πλάγια μήκη ἀπὸ τῶν ἐπιπέδων ἐνόπτρων, ὡς τῇ ἀληθείᾳ ἔχει, οὕτω καὶ φαίνεται. 1. ιβ΄ Vv. ΕΑ] ΑΕ m. 2. δὲ τὸ ∠] om. m. 4. Ante ὁμοίως add. οὐκοῦν m. rec. V. ὁμοίως — 5. ἐκβληθεισῶν] οὐκοῦν ἐκβληθεισῶν ὁμοίως τῶν ὄψεων ἐπʼ εὐθείας m. 5. Ante ἐπί add. ἐπʼ εὐθείας m. rec. V. 6. ὄν] corr. ex ὤν m. 2 v. 7. ἄνω] ἀνά? M. 8. ὄν] ὂν τοῦ Ε m, m. rec. V. Post ὄντος add. τοῦ Θ. τὰ ἄρα ὕψη καὶ τὰ βάθη ἀπὸ τῶν ἐπιπέδων ἐνόπτρων ἀνεστραμμένα φαίνεται m. 9. η΄] ιγ΄ Vv. 12. ΑΕ] ΑΘ Mm. 13. Β∠] in ras. V, ΒΓ m. ἔστω ὄμμα τὸ Β, μῆκος δὲ πλάγιον τὸ ∠Ε, ἔνοπτρον δὲ τὸ ΑΓ. οὐκοῦν ἀνακλασθεισῶν τῶν ὄψεων φαίνεται τὸ μὲν ∠ ἐπὶ τὸ Α, τὸ δὲ Ε ἐπὶ τὸ Γ, καί ἐστιν οὕτω τῇ φαντασίᾳ, καθάπερ καὶ τῇ ἀληθείᾳ ἔχει, τὸ ἔγγιον ἔγγιον, τὸ ἀπώτερον ἀπώτερον.