η΄. Τὰ ἴσα μεγέθη ἄνισον διεστηκότα οὐκ ἀναλόγως τοῖς ἀποστήμασιν ὁρᾶται. ἔστω γὰρ τὸ ΒΓ τῷ ∠Ζ ἴσον καὶ κείσθω αὐτῷ παράλληλον, ὄμμα δὲ ἔστω τὸ Κ, καὶ ἀπʼ αὐτοῦ προσπιπτέτωσαν ὄψεις αἱ ΚΖΓ, ΚΒ, Κ∠, ὧν ἡ ΚΓ πρὸς ὀρθὰς τῇ ΓΒ ἔστω. φημὶ δή, ὅτι οὐκ ἀναλόγως φανήσεται τὰ ΒΓ, ∠ μεγέθη τοῖς ΓΚ, ΚΖ διαστήμασιν. ἐπεὶ γὰρ ὀρθή ἐστιν ἡ ὑπὸ ∠ΖΚ, ὀξεῖα ἄρα ἐστὶν ἡ ὑπὸ ΖΘΚ ὥστε καὶ ἡ ΘΚ τῆς ΚΖ ἐστι μείζων. ὁ ἄρα κέντρῳ τῷ Κ, διαστήματι δὲ τῷ ΘΚ κύκλος γραφόμενος ὑπερπεσεῖται τὴν Κ Ζ. γεγράφθω καὶ ἔστω ὁ ΕΘΗ. καὶ ἐπεὶ τὸ Θ∠Κ τρίγωνον μείζονα λόγον ἔχει πρὸς τὸν ΘΕΚ τομέα ἤπερ τὸ ΖΘ τρίγωνον πρὸς τὸν ΗΘΚ τομέα, ἐναλλὰξ ἄρα τὸ Θ∠Κ τρίγωνον πρὸς τὸ ΖΘΚ τρίγωνον μείζονα λόγον ἔχει ἤπερ ὁ ΕΘΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα. συνθέντι ἄρα τὸ Ζ ∠Κ τρίγωνον πρὸς τὸ ΖΘΚ τρίγωνον μείζονα λόγον ἔχει ἧπερ ὁ ΕΗΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα. ἀλλʼ ὡς τὸ Ζ∠Κ τρίγωνον πρὸς τὸ ΖΘΚ τρίγωνον, οὕτως ἡ ∠Ζ πρὸς ΖΘ, ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα, οὕτως ἡ ὑπὸ ∠ΚΖ γωνία πρὸς τὴν ὑπὸ ΘΚΖ. ἐν μείζονι λόγῳ ἄρα ἐστὶ καὶ ἡ ∠ Ζ πρὸς τὴν ΖΘ ἤπερ ἡ Σ, Ρ γωνία πρὸς τὴν Ρ γωνίαν. ὡς δὲ ἡ ∠Ζ πρὸς τὴν ΖΘ, οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ καὶ ἡ ΚΓ ἄρα πρὸς τὴν ΚΖ ἐν μείζονι λόγῳ ἐστὶν ἤπερ ἡ Σ, Ρ γωνία πρὸς τὴν Ρ γωνίαν. καὶ ἐκ μὲν τῆς Σ Ρ γωνίας τὸ ∠Ζ ὁρᾶται, ἐκ δὲ τῆς Ρ γωνίας 2. ἄνισον] καὶ ἄνισον v; supra add καὶ παράλληλα m rec V, παράλληλα m. 2 v Supra οὐκ add ἀπὸ τῶν ὀμμάτων m. 2 v. 3 ἀποστήμασιν] corr. in διαστήμασιν m rec. V. τὸ ΒΓ. οὐκ ἀνάλογον ἄρα τοῖς ἀποστήμασι τὰ ἴσα μεγέθη ὁρᾶται. θ΄. Τὰ ὀρθογώνια μεγέθη ἐξ ἀποστήματος ὁρώμενα περιφερῆ φαίνεται. ἔστω γὰρ ὀρθογώνιον τὸ ΒΓ ἑστὼς μετέωρον ἐξ ἀποστήματος ὁρώμενον. οὐκοῦν ἐπεὶ ἕκαστον τῶν ὁρωμένων ἔχει τι μῆκος ἀποστήματος, οὗ γενόμενον οὐκέτι ὁρᾶται, ἡ μὲν Γ ἄρα γωνία οὐχ ὁρᾶται, τὰ δὲ ∠, Ζ σημεῖα μόνον φαίνεται. ὁμοίως καὶ ἐφʼ ἑκάστης τῶν λοιπῶν γωνιῶν τοῦτο συμβήσεται. ὥστε ὅλον περιφερὲς φανήσεται. ι΄. Τῶν κάτω τοῦ ὄμματος ἐπιπέδων κειμένων τὰ πόρρω μετεωρότερα φανεῖται. ἔστω γὰρ ὄμμα τὸ Β ἄνω τοῦ ΓΚ ἐπιπέδου κείμενον, ἀφʼ οὗ ὄμματος προσπιπτέτωσαν ἀκτῖνες αἱ ΒΓ, Β∠, ΒΖ, ΒΚ, ὧν ἡ ΒΚ κάθετος ἔστω ἐπὶ τὸ ὑποκείμενον ἐπίπεδον. λέγω, ὅτι τὸ Γ∠ τοῦ ∠Ζ μετεωρότερον φαίνεται, τὸ δὲ ∠Ζ τοῦ ΖΚ. εἰλήφθω γὰρ ἐπὶ τῆς ΖΚ τυχὸν σημεῖον τὸ Ε, καὶ ἤχθω πρὸς ὀρθὰς ἡ ΕΗ. καὶ ἐπεὶ αἱ ὄψεις πρότερον πρὸς τὴν ΗΕ προσπίπτουσιν ἤπερ πρὸς τὴν ΕΓ, προσπιπτέτω τῇ ΗΕ ἡ μὲν ΒΓ κατὰ τὸ Η σημεῖον, ἡ δὲ Β∠ κατὰ 7. ἑστὼς μετέωρον] m. rec. V. 10 γενομένου V p. 15. ι΄] V, ια΄ mut. in ιβ΄ m. rec. 16. ἐπιπέδον κειμένων V (α, β, ω m. rec.), κειμένων ἐπιπέδων vp. 17. φανεῖται] φαίνεται vp, m. rec V. 20. Β∠] ∠ in ras. m. 2 v. ΒΚ  (pr.) τὸ Λ, ἡ δὲ ΒΖ κατὰ τὸ Μ. ἐπεὶ οὖν τὸ Η τοῦ Λ μετεωρότερον, τὸ δὲ Λ τοῦ Μ, ἀλλʼ ἐν ᾧ ἐστι τὸ Η, ἐν τούτῳ τὸ Γ, ἐν ᾧ δὲ τὸ Λ, ἐν τούτῳ τὸ ∠, ἐν ᾧ δὲ τὸ Μ, ἐν τούτῳ τὸ Ζ, διὰ δὲ τῶν ΒΓ, Β∠ ἡ ∠Γ φαίνεται, διὰ δὲ τῶν Β∠, ΒΖ ἡ Ζ∠, διὰ δὲ τῶν ΒΖ, ΒΚ ἡ Κ Ζ, οὐκοῦν ἡ μὲν Γ∠ τῆς ∠ μετεωροτέρα φαίνεται, ἡ δὲ Ζ∠ τῆς ΖΚ τὰ γὰρ ὑπὸ μετεωροτέρων ἀκτίνων ὁρώμενα μετεωρότερα φαίνεται.