κβ΄. Ἐὰν ἐν τῷ αὐτῷ ἐπιπέδῳ, ἐν ᾧ τὸ ὄμμα, κύκλου περιφέρεια τεθῇ, εὐθεῖα γραμμὴ ἡ τοῦ κύκλου περιφέρεια φανεῖται. ἔστω γὰρ περιφέρεια ἡ ΒΓ. ὄμμα δὲ τὸ ∠ ἐν τῷ αὐτῷ ἐπιπέδῳ ὄν τῇ ΒΓ περιφερείᾳ, ἀφʼ οὐ προσπιπτέτωσαν  ὅψεις αἱ ∠Β, Ζ∠, ∠Γ. οὐκοῦν, ἐπεὶ τῶν ὁρωμένων οὐδὲν ἅμα ὁρᾶται, οὐκ ἂν φαίνοιτο ἡ ΖΒ περιφέρεια, τὰ δὲ Ζ, Β πέρατα. δόξει ἄρα ἡ ΖΒ περιφέρεια εὐθεῖα εἶναι. ὁμοίως δὲ καὶ ἡ ΖΓ. ὅλη ἄρα ἡ ΒΓ περιφέρεια εὐθεῖα δόξει εἶναι. κγ΄. Σφαίρας ὁπωσοῦν ὁρωμένης ὑπὸ τοῦ ἑνὸς ὄμματος ἔλαττον αἰεὶ ἡμισφαιρίου ὀφθήσεται, αὐτὸ δὲ τὸ ὁρώμενον τῆς σφαίρας ὑπὸ κύκλου περιεχόμενον φαίνεται. ἔστω γὰρ σφαῖρα, ἧς κέντρον ἔστω τὸ Κ, ὄμμα δὲ ἔστω τὸ Β, καὶ ἐπεζεύχθω ἡ ΒΚ, καὶ πρὸς ὀρθὰς αὐτῇ ἤχθω διὰ τοῦ Κ ἡ ΓΚ∠, καὶ ἐκβεβλήσθω τὸ διὰ τῶν ΒΚ, ΓΚ∠ ἐπίπεδον· ποιήσει δὴ ἐν τῇ σφαίρᾳ κύκλον. ποιείτω δὴ τὸν Γ∠ ΛΝ, περὶ δὲ τὴν ΚΒ [διάμετρον] κύκλος γεγράφθω, καὶ ἐπεζεύχθωσαν αἱ Κ Ζ, ΖΒ, ΒΛ, ΛΚ, ΛΖ. οὐκοῦν ἐπεὶ ὀρθαί εἰσιν αἱ ὑπὸ 4. φανεῖται] cor. ex φαίνεται m. 1 V. 5. τό] τῷ v. 6. ὄν] in ras. m. 1 V. 9. ἐπεί ] ἐπί v, V, sed corr. 12. τὰ δέ] mut. in ἀλλὰ μόνα τά m. rec. V. 17. ἀεί p. 19. ἔστω (alt.)] del. m. rec. V. 21. τό] im ras. V. 22. ΓΚ∠] cor. ex ∠ m. rec. V. 23. ποιείτο v. τόν] τό v. Γ∠ΛΝ] Ν mut. in Ζ m. rec. V, Ζ add. m. 2 p. διάμετρον] m. rec. V( 25. ΒΛ] corr. ex Β∠ V. ΚΖΒ, ΒΛΚ διὰ τὸ ἐν ἡμικυκλίοις εἶναι καὶ ἐκ κέντρου τὰς ΚΖ, ΚΛ, καθʼ ἓν σημεῖον ἐφάψονται αἱ ΒΛ, ΒΖ τῆς σφαίρας· αἰ ἄρα ἀπὸ τοῦ Β ὄμματος προσπίπτουσαι ἀκτῖνες κατὰ τὰς ΒΖ, ΒΛ πεσοῦνται. καὶ ἐπεὶ ἑκάστη τῶν πρὸς τῷ Θ γωνιῶν ὀρθή ἐστι διὰ τὸ παράλληλον εἶναι τὴν Γ∠ τῇ ΖΛ, καὶ ἴση ἡ ΖΘ τῇ ΘΛ, ἐὰν δὴ μενούσης τῆς ΘΒ τὸ ΘΖΒ τρίγωνον περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ, ὅθεν ἤρξατο φέρεσθαι, ἥ τε ΒΖ περιφερομένη καθʼ ἓν ἐφάψεται τῆς σφαιρικῆς ἐπιφανείας κατὰ τὸ Ζ, καὶ κύκλος ἔσται γεγραμμένος διὰ τῶν Ζ, Λ σημείων. ὥστε ὑπὸ κύκλου ἂν περιέχοιτο τὸ ὁρώμενον τῆς σφαίρας, ὅ γε ἔλαττόν ἐστιν ἡμισφαιρίου· τὸ γὰρ ΖΛ ἔλαττόν ἐστιν ἡμικυκλίου. ὥστε καὶ τὸ ὑπὸ τῆς ὄψεως περιεχόμενον ἔλαττόν ἐστιν ἡμισφαιρίου.