ιζ΄. Ὅσα ἀλλήλων ὑπερέχει τοῦ ὄμματος ἐπʼ εὐθείας τῷ ἐλάσσονι μεγέθει ὄντος, προσιόντος τε καὶ ἀφιστα μένου τοῦ ὄμματος τῷ ἴσῳ αἰεὶ δόξει τὸ ὑπερφαινό μενον τοῦ ἐλάσσονος ὑπερέχειν. ὑπερεχέτω γὰρ τὸ Β ∠ τοῦ ΘΗ τῷ ΒΓ, καὶ ἐπιζευχθεῖσα ἡ ΓΘ ἐκβεβλήσθω, καὶ ἔστω τὸ ὄμμα ἐπὶ τοῦ Ζ. οὐκοῦν ἡ ἀπὸ τοῦ ἀκτὶς προσπίπτουσα κατὰ τὴν ΖΓ ἐνεχθήσεται. πάλιν δὴ μετακείσθω τὸ ὄμμα ἐπὶ τοῦ Κ. οὐκοῦν διὰ τὰ αὐτὰ ἡ ἀπὸ τοῦ Κ ὄμματος ἀκτὶς προσπίπτουσα κατὰ τὴν ΚΓ ἐνεχθήσεται. τῷ αὐτῷ ἄρα ὑπερέξει τὸ Β∠ τοῦ ΘΗ καὶ προσιόντος τοῦ ὄμματος καὶ ἀφισταμένου. ιη΄. Τὸ δοθὲν ὕψος γνῶναι, πόσον ἐστίν. ἔστω γάρ, ὃ δεῖ ἐπιγνῶναι ὕψος, πόσον ἐστί, τὸ ΒΓ, καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ Β∠ 4. δή] δέ v προσπιπτέτω] -σπ- in ras. V. 7. ἔλαττον v 11 μεγέθη v. ὄντως v, sed corr 15. ΘΗ] ΘΗ V v ΘΝ p 16. ΓΘ] in ras m. 1 V. 23. ΘΗ] ΘΗ V v. οὐκοῦν σκιὰ ἔσται ἡ Γ∠. ἔλαβον δή τι γνώριμο μέγεθος τὸ ΚΖ καὶ ἐνήρμοσα ὑπὸ τὴν ∠ γωνία παράλληλον τῇ ΒΓ. οὐκοῦν ἐστιν, ὡς τὸ ∠Γ πρὸς τὸ ΓΒ, οὕτως τὸ ∠ πρὸς τὸ ΖΚ. καὶ γνώριμος ὁ λόγος ὁ τῆς ∠Ζ πρὸς ΖΚ γνώριμος ἄρα καὶ ὁ τῆς ∠Γ πρὸς Γ Β. καί ἐστι γνώριμος ἡ ∠Γ σκιά· γνώριμον ἄρα καὶ τὸ ΓΒ ὕψος. ιθ΄. Μὴ ὄντος ἡλίου τὸ δοθὲν ὕψος γνῶναι, ἡλίκο ἐστίν. ἔστω γάρ, ὃ δεῖ ἐπιγνῶναι ὕψος, πηλίκον ἐστίν τὸ ΒΓ, καὶ κείσθω κάτοπτρον τὸ ΚΑ, ὄμμα δὲ ἕστο τὸ ∠, καὶ ἀπʼ αὐτοῦ προσπιπτέτω ἀκτὶς ἡ ∠Θ καὶ ἀνακεκλάσθω ὡς ἡ ΘΒ ἐπὶ τὸ Β πέρας, καὶ ἀπὸ τοῦ ∠ ὄμματος κάθετος ἡ ∠ Ζ. οὐκοῦν ἴσαι εἰσὶν αἱ πρὸς τῷ Θ γωνίαι ἀλλήλαις· τοῦτο γὰρ δείκνυται ἐν τοῖς Κατοπτρικοῖς. ἀλλὰ καὶ ἡ πρὸς τῷ Γ τῇ πρὸς τῷ Ζ ἴση ἐστίν· ὀρθὴ γάρ ἐστιν ἐκατέρα αὐτῶν. λοιπὴ ἄρα ἡ πρὸς τῷ Β λοιπῇ τῇ πρὸς τῷ ∠ ἴση ἐστίν. ὥστ ὅμοιον ἂν εἴη τὸ ΒΓΘ τρίγωνον τῷ ∠ΖΘ τριγώνῳ ἔστιν ἄρα, ὡς ἡ ΘΓ πρὸς Γ Β, οὕτως ἡ ΘΖ πρὸς Ζ∠ τῆς δὲ ΘΖ πρὸς Ζ ∠ λόγος δοθείς ἐστιν· καὶ τῆς ΘΓ ἄρα πρὸς ΓΒ γνώριμος ὁ λόγος ἐστίν. γνώριμος δ. ἡ ΘΓ γνώριμον ἄρα καὶ τὸ ΓΒ ὕψος. 2. ἐνήρμοσται v. Ante ∠ add. πρὸς τῷ m. rec. V. 4 ΓΒ] Β p. 8. ἐστιν V v. 9 σκιά· γνώριμον] in ras. m 1 V Post ὕψος add. τὸ ἄρα δοθὲν ὕψος ἔγνωσται πόσον ἐστί m rec. V. 13. ἐστί p. 15. Supra ∠Θ add. τῷ κατόπτρο