ε΄. Τὰ ἴσα μεγέθη ἄνισον διεστηκότα ἄνισα φαίνεται, καὶ μεῖζον ἀεὶ τὸ ἔγγιον κείμενον τοῦ ὄμματος. ἔστω δύο ἴσα μεγέθη τὰ ΑΒ, Γ∠, ὄμμα δὲ ἔστω τὸ Ε, ἀφʼ οὗ ἄνισον διεστηκέτω, καὶ ἔστω ἔγγιον τὸ ΑΒ. λέγω, ὅτι μεῖζον φανήσεται τὸ ΑΒ. προσπιπτέτωσαν ἀκτῖνες αἱ ΑΕ, ΕΒ, ΚΓ, Ε∠. ἐπεὶ οὖν τὰ ὑπὸ μειζόνων γωνιῶν ὁρώμενα μείζονα φαίνεται, μείζων δὲ γωνία ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΓΕ∠, μείζων ἄρα φανήσεται καὶ ἡ ΑΒ τῆς Γ∠. ς΄. Τὰ παράλληλα τῶν διαστημάτων ἐξ ἀποστήματος ὁρώμενα ἀνισοπλατῆ φαίνεται. ἔστω δύο παράλληλα μεγέθη τὰ ΑΒ. ΓΔ, ὄμμα δὲ ἔστω τὸ Ε. λέγω, ὅτι τὰ ΑΒ, Γ∠ ἀνισοπλατῆ φαίνεται, καὶ μεῖζον ἀεὶ τὸ ἔγγιον διάστημα τοῦ πορρώτερον. προσπιπτέτωσαν ἀκτῖνες αἱ ΕΒ, ΕΖ, ΚΘ, Κ∠, ΕΗ, ΕΚ, καὶ ἐπεζεύχθωσαν εὐθεῖαι αἱ Β∠, ΖΗ, ΘΚ. ἐπεὶ οὖν μείζων ἐστὶν ἡ ὑπὸ ΒΕ∠ γωνία τῆς ὑπὸ ΖΕΗ γωνίας, μείζων ἄρα καὶ ἡ Β∠ τῆς ΖΗ φαίνεται. 1. ΓΕΒ] ΒΕΓ B Vat. v, ΕΓΒ Vat 1 m. 2 κἂν] καί m. 3. ἀχθῇ] in ras. V. 6. ἄνισον] corr. ex ἀνίσων v 7. ἔγγειον V, corr m 1, ut lin. 10. ὄματος v. 12. ΑΕ] ΕΑ Β Vat v. 15 ΑΕΒ] τῶν ΑΕΒ B Vat v V, sed corr. 16 ἄρα] om. m. 22. ἔγγειον V. sed corr. 23. προσπιπτέτω Bv. E∠] EΚ Bv. 24 EΚ] Ε∠ Bv. 25. ἐστί v. πάλιν ἐπεὶ μείζων ἡ ὑπὸ ΖΕ γωνία τῆς ὑπὸ ΘΕΚ γωνίας, μείζων ἄρα καὶ ἡ ΖΗ τῆς ΘΚ φαίνεται. μεῖζον ἄρα τὸ μὲν Β∠ διάστημα τοῦ ΖΗ, τὸ δὲ ΖΗ τοῦ ΘΚ. οὐκέτι οὖν ὀφθήσεται παράλληλα ὄντα τὰ διαστήματα ἐπʼ ἴσης, ἀλλʼ ἀνισοπλατῆ. ἐπὶ τῶν ἐν μετεώρῳ κειμένων διαστημάτων καθιέσθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ ὑποκείμενον ἐπίπεδον κάθετος ἡ ΑΒ, καὶ ἔστωσαν παράλληλοι αἱ ΛΞ ΚΝ, ΘΜ. λέγω, ὅτι καὶ οὕτως ἀνισοπλατῆ φαίνεται τὰ Γ∠, ΕΖ μεγέθη. ἤχθω κάθετος ἀπὸ τοῦ Β ἐπὶ τὴν ΛΞ ἡ ΒΡ. καὶ ἐκβεβλήσθω ἡ ΒΡ ἐπὶ τὸ Ο, καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΑΛ, ΑΚ, ΑΘ, ΑΞ, ΑΝ, ΑΜ, καὶ ἐπεζεύχθωσαν αἱ ΑΡ, ΑΠ, ΑΟ. ἐπεὶ οὖν ἀπὸ μετεωροτέρου σημείου τοῦ Α ἐπὶ τὴν ΡΞ ἐπέζευκταί τις εὐθεῖα ἡ ΑΡ, ἡ ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν, καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ, καὶ ἡ ΑΠ ἐπὶ τὴν ΠΝ. ὀρθογώνια ἄρα ἐστὶ τὰ ΑΡΞ ΑΠΝ, ΑΟΜ τρίγωνα. ἐπεὶ οὖν ὀρθογώνιά ἐστι, καί ἐστιν ἡ μὲν ΠΝ τῇ ΡΞ ἴση, ἡ δὲ ΠΑ τῆς ΑΡ μείζων, μείζων ἄρα γωνία ἡ ὑπὸ Ξ ΑΡ τῆς ὑπὸ ΠΑΝ. μεῖζον ἄρα καὶ ὀφθήσεται τὸ ΡΞ τοῦ ΠΝ. ὁμοίως καὶ τὸ ΡΛ τοῦ ΠΚ μεῖζον. ὅλον ἄρα τὸ ΛΞ ὅλου τοῦ ΚΝ ὀφθήσεται μεῖζον. ἀνισοπλατῆ ἄρα καὶ οὕτως ὀφθήσεται τὰ μεγέθη. 3. διάδημα v, sed corr. 6. ζ΄ V Vat. Bm. 9. ΛΞ] ΛΖ v. 10. καί] om. V. 12. κάθετος] im ras. v. 15 τό] ζ΄. Τὰ ἐπὶ τῆς αὐτῆς εὐθείας ὄντα ἴσα μεγέθη μὴ ἐφεξῆς ἀλλήλοις τεθέντα καὶ ἄνισον διεστηκότα τοῦ ὄμματος ἄνισα φαίνεται. ἔστω δύο ἴσα μεγέθη τὰ ΑΒ, Γ∠ ἐπὶ τῆς αὐτῆς εὐθείας τῆς Α∠ μὴ ἐφεξῆς ἀλλήλοις ὄντα καὶ ἄνισον διεστηκότα ἀπὸ τοῦ ὄμματος τοῦ Ε, καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΕΑ, Ε∠, καὶ ἔστω μείζων ἡ ΕΑ τῆς Ε∠. λέγω, ὅτι ἡ Γ∠ τῆς ΑΒ μείζων φανήσεται. προσπιπτέτωσαν ἀκτῖνες αἱ ΕΒ, ΕΓ, καὶ περιγεγράφθω περὶ τὸ ΑΕ∠ τρίγωνον κύκλος ὁ ΑΕ ∠. καὶ προσεκβεβλήσθωσαν ταῖς ΕΒ, ΕΓ εὐθείαις εὐθεῖαι αἱ ΒΖ, ΓΗ, καὶ ἀνεστάτωσαν ἀπὸ τῶν Β, Γ σημείων πρὸς ὀρθὰς γωνίας ἴσαι εὐθεῖαι αἱ ΒΘ, ΓΚ. ἔστι δὲ ἴση ἡ ΑΒ τῇ ΓΔ, ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ∠ΓΚ ἐστιν ἴση. καὶ περιφέρεια ἄρα ἡ ΑΘ περιφερείᾳ τῇ ∠Κ ἐστιν ἴση. ἡ Κ ∠ ἄρα περιφέρεια τῆς ΖΑ περιφερείας μείζων ἐστίν. πολλῷ ἄρα ἡ Η ∠ περιφέρεια τῆς ΖΑ μείζων· ἐστίν. ἀλλʼ ἐπὶ μὲν τῆς ΖΑ περιφερείας ἡ ὑπὸ ΑΕΖ γωνία βέβηκεν, ἐπὶ δὲ τῆς Η∠ περιφερείας ἡ ὑπὸ ΗΕ∠. ἡ ἄρα ὑπὸ ΗΕ∠ γωνία τῆς ὑπὸ ΑΕΖ μείζων ἐστίν. ἀλλʼ ὑπὸ μὲν τῆς ὑπὸ ΑΕΖ ἡ ΑΒ βλέπεται, ὑπὸ δὲ τῆς ὑπὸ ΗΕ∠ ἡ Γ∠. μείζων ἄρα ἡ Γ∠ τῆς ΑΒ φαίνεται. 1. ζ΄] η΄ V Vat. B vm. 5 AB] AΗ v. 6 ἀλλήλων B Vat. v. ἄνισον] ἄνισον διάστημα m. 9 EA] ΑB v. 10 μεῖζον Bv. η΄. Τὰ ἴση μεγέθη καὶ παράλληλα ἄνισον διεστηκότα ἀπὸ τοῦ ὄμματος οὐκ ἀναλόγως τοῖς διαστήμασιν ὁρᾶται. ἔστω δύο μεγέθη τὰ ΑΒ, Γ∠ ἄνισον διεστηκότα ἀπὸ τοῦ ὄμματος τοῦ Ε. λέγω, ὅτι οὔκ ἐστιν, ὡς φαίνεται ἔχον, ὡς τὸ Γ∠ πρὸς τὸ ΑΒ, οὕτως τὸ ΒΕ πρὸς τὸ Ε∠. προσπιπτέτωσαν γὰρ ἀκτῖνες αἱ ΑΕ, ΕΓ, καὶ κέντρῳ μὲν τῷ Ε διαστήματι δὲ τῷ ΕΖ κύκλου γεγράφθω περιφέρεια ἡ ΗΖΘ. ἐπεὶ οὖν τὸ ΕΖΓ τρίγωνον τοῦ ΕΖΗ τομέως μεῖζόν ἐστιν, τὸ δὲ Ε ΕΖ∠ τρίγωνον τοῦ ΕΖΘ τομέως ἔλαττόν ἐστιν, τὸ ΕΖΓ ἄρα τρίγωνον πρὸς τὸν ΕΖΗ τομέα μείζονα λόγον ἔχει ἤπερ τὸ ΕΖ∠ τρίγωνον πρὸς τὸν ΕΖΘ τομέα. καὶ ἐναλλὰξ τὸ ΕΖΓ τρίγωνον πρὸς τὸ ΕΖ∠ τρίγωνον μείζονα λόγον ἔχει ἤπερ ὁ ΕΖΗ τομεὺς πρὸς τὸν ΕΖΘ τομέα, καὶ συνθέντι τὸ ΕΓ∠ τρίγωνον πρὸς τὸ ΕΖ∠ τρίγωνον μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα. ἀλλʼ ὡς τὸ Ε∠Γ πρὸς τὸ ΕΖ∠ τρίγωνον, οὕτως ἡ Γ∠ πρὸς τὴν ∠ Ζ. ἡ δὲ Γ∠ τῇ ΑΒ ἐστιν ἴση, καὶ ὡς ἡ ΑΒ πρὸς τὴν ∠ Ζ, ἡ ΒΕ πρὸς τὴν Ε∠. ἡ ΒΕ ἄρα πρὸς τὴν Ε∠ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα. ὡς δὲ ὁ τομεὺς πρὸς τὸν τομέα, οὕτως ἡ ὑπὸ ΗΕΘ γωνία πρὸς τὴν ὑπὸ ΖΕΘ γωνίαν. ἡ ΒΕ ἄρα 1. η΄] θ΄ codd. 4. Γ∠] corr ex ΒΓ B Vat., Β Γ v. 6. ὡς] om V B Vat. m v. 7. προσπιπτέτω Bv et Vat., sed corr. πρὸς τὴν Ε∠ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΗΕΘ γωνία πρὸς τὴν ὑπὸ ΖΕΘ. καὶ ἐκ μὲν τῆς ὑπὸ ΗΕΘ γωνίας βλέπεται τὸ Γ∠, ἐκ δὲ τῆς ὑπὸ ΖΕΘ τὸ ΑΒ. οὐκ ἀνάλογον ἄρα τοῖς ἀποστήμασιν ὁρᾶται τὰ ἴσα μεγέθη. θ΄. Τὰ ὀρθογώνια μεγέθη ἐξ ἀποστήματος ὁρώμενα περιφερῆ φαίνεται. ἔστω γὰρ ὀρθογώνιον τὸ ΒΓ ἑστὼς μετέωρον ἐξ ἀποστήματος ὁρώμενον. οὐκοῦν, ἐπεὶ ἕκαστον τῶν ὁρωμένων ἔχει τι μῆκος ἀποστήματος, οὗ γενόμενον οὐκέτι ὁρᾶται, ἡ μὲν Γ ἄρα γωνία οὐχ ὁρᾶται, τὰ δὲ ∠, Ζ σημεῖα μόνον φαίνεται. ὁμοίως καὶ ἐφʼ ἑκάστης τῶν λοιπῶν γωνιῶν τοῦτο συμβήσεται. ὥστε ὅλον περιφερὲς φανήσεται.