ιε΄. Ἐὰν δύο μεγέθη πρὸς ἄλληλα λόγον ἔχῃ δεδομένον καὶ ἀφαιρεθῇ ἀπὸ ἑκατέρου αὐτῶν δεδομένον μέγεθος, τὰ λοιπὰ πρὸς ἄλληλα ἤτοι λόγον ἕξει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. δύο γὰρ μεγέθη τὰ ΑΒ, ΓΔ πρὸς ἄλληλα λόγον ἐχέτω δεδομένον, καὶ ἀφῃρήσθω ἀφʼ ἑκατέρου αὐτῶν δεδομένον μέγεθος, ἀπὸ μὲν τοῦ ΑΒ τὸ ΕΑ, ἀπὸ δὲ τοῦ ΓΔ τὸ ΓΖ· λέγω, ὅτι τὰ λοιπὰ τὰ ΕΒ, ΖΔ πρὸς ἄλληλα ἤτοι λόγον ἕξει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ ἑκάτερον τῶν ΑΕ, ΓΖ δοθέν ἐστι, λόγος ἄρα τοῦ ΑΕ πρὸς ΓΖ δοθείς. καὶ εἰ μὲν ὁ αὐτός ἐστι τῷ τοῦ ΑΒ πρὸς ΓΔ, ἔσται καὶ λοιποῦ τοῦ ΕΒ πρὸς λοιπὸν τὸ ΖΔ λόγος δοθείς. μὴ ἔστω δὴ ὁ αὐτός, καὶ πεποιήσθω ὡς τὸ ΑΒ πρὸς ΓΔ, οὕτως τὸ ΑΗ πρὸς τὸ ΓΖ. λόγος δὲ τοῦ 2. τὸ ΓΔ a. τὸ ΖΓ a. λόγος — 3. ΖΓ(alt.)] om. a. 3. ΖΓ (utrumque)] ΓΖ v. 5. ἐστι codd. ἐπεί — 7. δο- θείς] ὅλου τοῦ ΗΒ πρὸς ὅλον τὸ ΖΔ λόγος ἐστὶ δοθείς a. 6. ΗΑ] ΗΔ v. ΖΓ|ΓΖ v. 7. ἐστιν v. τὸ δοθὲν τό P. 12. ἔχει β. 17. ΓΖ] ΖΓ a. 18. ἔχει a. 20. τῶν] τὸ Vat. 21. καὶ τοῦ a. 22 τῷ] om. a. ΑΒ πρὸς τὸ ΓΔ δοθείς· λόγος ἄρα καὶ τοῦ ΑΗ πρὸς τὸ ΓΖ δοθείς· δοθὲν δὲ τὸ ΓΖ· δοθὲν ἄρα καὶ τὸ ΑΗ. ἔστι δὲ καὶ τὸ ΑΕ δοθέν· καὶ λοιπὸν ἄρα τὸ ΕΗ δοθέν ἐστιν. καὶ ἐπεὶ ὡς τὸ ΑΒ πρὸς τὸ ΓΔ, οὕτως τὸ ΑΗ πρὸς τὸ ΓΖ, λοιποῦ ἄρα τοῦ ΗΒ πρὸς λοιπὸν τὸ ΖΔ λόγος ἐστὶ δοθείς. καί ἐστι δοθὲν τὸ ΕΗ· τὸ ΕΒ ἄρα τοῦ ΖΔ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ις΄. Ἐὰν δύο μεγέθη πρὸς ἄλληλα λόγον ἔχῃ δεδομένον, καὶ ἀπὸ μὲν τοῦ ἑνὸς αὐτῶν δεδομένον μέγεθος ἀφαι- ρεθῇ, τῷ δὲ ἑτέρῳ αὐτῶν δεδομένον μέγεθος προστεθῇ, τὸ ὅλον τοῦ λοιποῦ δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ. δύο γὰρ μεγέθη τὰ ΑΒ, ΓΔ λόγον ἐχέτω δεδο- μένον, καὶ ἀπὸ μὲν τοῦ ΓΔ δεδομένον μέγεθος ἀφῃ- ρήσθω τὸ ΓΕ, τῷ δὲ ΑΒ δεδομένον μέγεθος προσ- κείσθω τὸ ΖΑ. λέγω, ὅτι ὅλον τὸ ΖΒ τοῦ λοιποῦ τοῦ ΕΔ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ λόγος ἐστὶ τοῦ ΑΒ πρὸς ΓΔ δοθείς, ὁ αὐτὸς αὐτῷ γεγονέτω τοῦ ΑΗ πρὸς τὸ ΓΕ· λόγος ἄρα καὶ τοῦ ΑΗ πρὸς τὸ ΓΕ δοθείς· δοθὲν δὲ τὸ ΓΕ· δοθὲν ἄρα καὶ τὸ ΑΗ. ἔστι δὲ καὶ τὸ ΑΖ δοθέν· ὅλον ἄρα τὸ ΖΗ δοθέν ἐστιν. καὶ ἐπεὶ ὡς τὸ ΑΒ πρὸς τὸ ΓΔ, οὕτως τὸ ΑΗ πρὸς ΓΕ, καὶ λοιποῦ τοῦ ΗΒ πρὸς λοιπὸν τὸ ΕΔ λόγος ἐστὶ δοθείς. 1. λόγος ἄρα] om. a. 2. ΓΖ (pr.)] ΓΖ λόγος ἐστί a. 3. ἔστιν v. 4. ἐπεί — 5. ΓΖ] om. a. 5. ἄρα] om. a. 6. ἐστίν v. 7. ΖΔ] Vat. δοθέντι] δοθέν a. ἐστι a. 10. μέν] om. β. 13. Post ΓΔ add. πρὸς ἄλληλα a. 14. καὶ ἀπὸ μέν] ἀπὸ δέ a. δεδομένον] om. a. 16. τό (pr.)] supra add. m. 2 P. ὅλον] om. a. τοῦ ] om. Vat. v. καί ἐστι δοθὲν τὸ ΗΖ· τὸ ΖΒ ἄρα τοῦ ΕΔ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ιζ΄. Ἐὰν ᾖ τρία μεγέθη, καὶ τὸ πρῶτον τοῦ δευτέρου δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, ᾖ δὲ καὶ τὸ τρίτον τοῦ αὐτοῦ δοθέντι μεῖζον ἢ ἐν λόγῳ, τὸ πρῶτον πρὸς τὸ τρίτον ἤτοι λόγον ἕξει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ. ἔστω τρία μεγέθη τὰ ΑΒ, Γ, ΔΕ, καὶ ἑκάτερον τῶν ΑΒ, ΔΕ τοῦ Γ δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ· λέγω, ὅτι τὰ ΑΒ, ΔΕ ἤτοι πρὸς ἄλληλα λόγον ἔχει δεδομένον ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΔΕ τοῦ Γ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΔΗ· λοιποῦ ἄρα τοῦ ΗΕ πρὸς τὸ Γ λόγος ἐστὶ δοθείς. διὰ τὰ αὐτὰ δὴ καὶ τοῦ ΖΒ πρὸς τὸ Γ λόγος ἐστὶ δοθείς· καὶ τοῦ ΖΒ ἄρα πρὸς τὸ ΗΕ λόγος ἐστὶ δοθείς. καὶ πρόσκειται αὐτοῖς δεδομένα μεγέθη τὰ ΑΖ, ΔΗ· τὰ ὅλα ἄρα τὰ ΑΒ, ΔΕ πρὸς ἄλληλα ἤτοι λόγον ἔχει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ιη΄. Ἐὰν ᾖ τρία μεγέθη, ἓν δὲ αὐτῶν ἑκατέρου τῶν λοιπῶν δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, τὰ λοιπὰ δύο 4. ᾖ] om. β (non a). 5. δοθέντι] supra scr. m. 1 β. 7. ἔχει β. 11. ἔχει] corr. ex ἔχῃ m. 2 v. 12. δοθέντι] om. v. 14. ἐπεὶ γὰρ τὸ ΔΕ] ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΑΖ· λοιποῦ ἄρα τοῦ ΖΒ πρὸς τὸ Γ λόγος ἐστὶ δοθείς. πάλιν ἐπεὶ τὸ ΕΔ a. 16. διά — 17. καί] om. a. 16. τὰ αὐτά] ταῦτα Vat. 17. ΖΒ] Γ α. Γ] ΖΒ a. 18. ἄρα] om. a. δο- θείς] om. a. 20. τά] om. a. 25. ᾖ] om. β. πρὸς ἄλληλα ἤτοι λόγον ἕξει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἔστω τρία μεγέθη τὰ ΑΒ, ΓΔ, ΕΖ, ἓν δὲ αὐτῶν τὸ ΓΔ ἑκατέρου τῶν λοιπῶν τῶν ΑΒ, ΕΖ δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ. λέγω, ὅτι τὸ ΑΒ πρὸς τὸ ΕΖ ἤτοι λόγον ἔχει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΓΔ τοῦ ΑΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΓΗ. λοιποῦ ἄρα τοῦ ΗΔ πρὸς τὸ ΑΒ λόγος ἐστὶ δοθείς. ὁ αὐτὸς αὐτῷ γεγονέτω ὁ τοῦ ΓΗ πρὸς τὸ ΑΘ. λόγος ἄρα καὶ τοῦ ΓΗ πρὸς τὸ ΑΘ δοθείς. δοθὲν δὲ τὸ ΓΗ. δοθὲν ἄρα καὶ τὸ ΑΘ. καὶ ὅλου τοῦ ΓΔ πρὸς ὅλον τὸ ΘΒ λόγος ἐστὶ δοθείς. πάλιν, ἐπεὶ τὸ ΓΔ τοῦ ΕΖ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΓΚ. λοιποῦ τοῦ ΚΔ πρὸς ΕΖ λόγος ἐστὶ δοθείς. ὁ αὐτὸς αὐτῷ γεγονέτω ὁ τοῦ ΓΚ πρὸς ΛΕ. λόγος ἄρα καὶ τοῦ ΓΚ πρὸς ΛΕ δοθείς. δοθὲν δὲ τὸ ΓΚ. δοθὲν ἄρα καὶ τὸ ΛΕ. καὶ ὅλου τοῦ ΓΔ πρὸς ὅλον τὸ ΛΖ λόγος ἐστὶ δοθείς. τοῦ δὲ ΓΔ πρὸς ΘΒ λόγος ἐστὶ δοθείς. καὶ τοῦ ΘΒ ἄρα πρὸς ΛΖ λόγος ἐστὶ δοθείς. καὶ ἀφῄρηται ἀπʼ αὐτῶν δε- δομένα μεγέθη τὰ ΘΑ, ΛΕ. τὰ ΑΒ, ΕΖ ἄρα ἤτοι πρὸς ἄλληλα λόγον ἕξει δεδομένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. 1. ἔχει β. 2. ἐστιν] supra comp. add. m. 2 v. 8. ἐπεί — 9. λόγῳ] om. a. 8. ἐστιν] om. v. 10. ἄρα] om. a. 12. δοθείς ἐστι a. 15. ἐστιν] om. a. 16. ἐστίν v. 18. ΛΕ] ΕΛ a; item lin. 19. 20. τοῦ δὲ ΓΔ — 22. ΛΖ] τοῦ ΘΑ καὶ τοῦ ΛΖ a. 21. καί] om. v. 22. ἀφήρηται] ἀφρρήσθω v. 24. ἔχει a. ιθ΄. Ἐὰν ᾖ τρία μεγέθη, καὶ τὸ μὲν πρῶτον τοῦ δευ- τέρου δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, ᾖ δὲ καὶ τὸ δεύ- τερον τοῦ τρίτου δοθέντι μεῖζον ἢ ἐν λόγῳ, καὶ τὸ πρῶτον τοῦ τρίτου δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ. ἔστω τρία μεγέθη τὰ ΑΒ, ΓΔ, Ε, καὶ τὸ μὲν ΑΒ τοῦ ΓΔ δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ, τὸ δὲ ΓΔ τοῦ Ε δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ. λέγω, ὅτι καὶ τὸ ΑΒ τοῦ Ε δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΓΔ τοῦ Ε δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΓΖ· λοιποῦ ἄρα τὸῦ ΖΔ πρὸς τὸ Ε λόγος ἐστὶ δοθείς. πάλιν; ἐπεὶ τὸ ΑΒ τοῦ ΓΔ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΑΗ· λοιποῦ ἄρα τοῦ ΗΒ πρὸς τὸ ΓΔ λόγος ἐστὶ δοθείς. ὁ αὐτὸς αὐτῷ γεγονέτω τοῦ ΗΘ πρὸς τὸ ΓΖ· λόγος ἄρα καὶ τοῦ ΗΘ πρὸς τὸ ΓΖ δοθείς. δοθὲν δὲ τὸ ΓΖ· δοθὲν ἄρα καὶ τὸ ΗΘ. ἔστι δὲ καὶ τὸ ΗΑ δοθέν· καὶ ὅλον ἄρα τὸ ΘΑ δοθέν ἐστιν. καὶ ἐπεὶ ὡς τὸ ΗΒ πρὸς τὸ ΓΔ, οὕτως τὸ ΗΘ πρὸς τὸ ΓΖ, καὶ λοιποῦ τοῦ ΘΒ πρὸς λοιπὸν τὸ ΖΔ λόγος ἐστὶ δοθείς. τοῦ δὲ ΖΔ πρὸς τὸ Ε λόγος ἐστὶ δοθείς· καὶ τοῦ ΘΒ ἄρα πρὸς τὸ Ε λόγος ἐστὶ δοθείς. καὶ δοθὲν τὸ ΘΑ· τὸ ΒΑ ἄρα τοῦ Ε δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. 2. καί] supra comp. add. m. 2 v. 3. ᾖ δέ om. β. 4. δοθέντι] bis β (non a). μεῖζον ᾖ ἤ a. ἢ ἐν λόγῳ] om β (non a). 7. τοῦ] τῷ a. 12. ΖΔ] Ζ supra add. m. 1 v. λόγος ἐστὶ δοθεὶς πρὸς τὸ Ε a. 14. τό (alt.)] τοῦ a. 16. τοῦ(pr.)] ὁ τοῦ va. 17. δοθέν(pr.) — 18. ΗΘ] δ β οθὲν ἄρα καὶ τὸ ΗΘ· δ α οθὲν δὲ τὸ ΓΖ v. 18. ἔστιν v. 19. ἐστι codd. καὶ ἐπεί — 20. ΓΖ] om. a 24. Seq. demonstr. altera, υ. app.