ι΄. Ἐὰν μέγεθος μεγέθους δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, καὶ τὸ συναμφότερον τοῦ αὐτοῦ δοθέντι μεῖζον ἔσται, ἢ ἐν λόγῳ· καὶ ἐὰν τὸ συναμφότερον τοῦ αὐτοῦ δο- θέντι μεῖζον ᾖ ἢ ἐν λόγῳ, καὶ τὸ λοιπὸν τοῦ αὐτοῦ ἤτοι δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἢ τὸ λοιπὸν μετὰ τοῦ ἑξῆς, πρὸς ὃ τὸ ἕτερον λόγον ἔχει δεδομένον, δοθέν ἐστιν. μέγεθος γὰρ τὸ ΑΒ μεγέθους τοῦ ΒΓ δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ· λέγω, ὅτι καὶ τὸ συναμφότερον 5. ἐστίν Pv, et sic P per totam prop. ἐστὶν ὁ τοῦ a. τοῦ (alt.)] corr. ex τό m. 1 a. 7. ἀλλά — 9. δοθείς] supra add. m. 3 v. 7. ἀλλὰ καί a. τοῦ] ὁ τοῦ a, item lin. 8. 8. λόγος ἐστί (alt.)] ἐστι λόγος v. 9. ἐστί (alt.)] ἐστίν v. 11. ἄρα] om. a. Γ] Ζ a. 12. ἐστίν v; item p. 18, 5. 16. ἦ] om. β. 17. ἔσται – 19. μεῖζον] bis β (non a). 19. ῃ] om. β, ἔσται a. τὸ ΑΓ τοῦ αὐτοῦ τοῦ ΓΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΑΒ τοῦ ΒΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΑΔ· λοιποῦ ἄρα τοῦ ΔΒ πρὸς τὸ ΒΓ λόγος ἐστὶ δοθείς· καὶ συν- θέντι τοῦ ΔΓ πρὸς τὸ ΒΓ λόγος ἐστὶ δοθείς. καί ἐστι δοθὲν τὸ ΑΔ· τὸ ΓΑ ἄρα τοῦ ΓΒ δοθέντι μεῖ- ζόν ἐστιν ἢ ἐν λόγῳ. πάλιν δὴ τὸ ΑΓ τοῦ ΓΒ δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ· λέγω, ὅτι τὸ λοιπὸν τὸ ΑΒ τοῦ αὐτοῦ τοῦ ΒΓ ἤτοι δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ, ἢ τὸ ΑΒ μετὰ τοῦ ἑξῆς, πρὸς ὅ τὸν ΒΓ λόγον ἔχει δοθέντα, δοθέν ἐστιν. ἐπεὶ γὰρ τὸ ΑΓ τοῦ ΓΒ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος. τὸ δὴ δοθὲν ἤτοι ἔλασσόν ἐστι τοῦ ΑΒ ἢ μεῖζον. ἔστω πρότερον ἔλασσον, καὶ ἔστω τὸ ΑΔ· λοιποῦ ἄρα τοῦ ΔΓ πρὸς ΓΒ λόγος ἐστὶ δοθείς· διελόντι ἄρα τοῦ ΔΒ πρὸς ΒΓ λόγος ἐστὶ δοθείς. καί ἐστι δοθὲν τὸ ΑΔ· τὸ ΑΒ ἄρα τοῦ ΒΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἀλλὰ δὴ τὸ δοθὲν μεῖζον ἔστω τοῦ ΑΒ, καὶ κείσθω αὐτῷ ἴσον τὸ ΑΕ· λόγος ἄρα λοιποῦ τοῦ ΕΓ πρὸς. τὸ ΓΒ ἐστι δοθείς· ὥστε καὶ ἀνάπαλιν τοῦ ΒΓ πρὸς τὸ ΕΓ λόγος ἐστὶ δοθείς· καὶ ἀναστρέψαντι ὁ τοῦ ΒΓ πρὸς ΒΕ λόγος ἐστὶ δοθείς. καί ἐστι τὸ ΕΒ μετὰ 5. ἄρα] om. a. συντεθέντι a. 6. ΓΔ a. 7. ἐστι] ἔστω a. τὸ δοθὲν τό PVat.v. τό (alt.)] corr. ex τῷ m. 2 v. ΓΒ] ΓΔ Vat. 11. ἔσται] ἐστιν a. Α B] Β add. m. 2 Vat. 12. μετὰ τοῦ ἐξῆς] μεθʼ οὗ a. 13. ἐστιν] add. m. 2 Vat. 14. ΓΒ] B a. 16. ἔλαττόν (corr. ex ἴσον m. 3) v. 18. τὸ ΓΒ a. διελόντι — 19. δοθείς ] add m. 3 v. 18. διελόντι — ΒΓ] καὶ τοῦ ΔΒ ἄρα πρὸς τὸ ΒΓ a. 19. ἐστιν v; item lin. 23, 24, 25. 21. ΑΒ] ΔΓ v. 22. αὐτῷ] om. a τοῦ ΒΑ δοθέν· ὅλον γὰρ τὸ ΑΕ δοθέν ἐστιν· τὸ ΒΑ ἄρα μετὰ τοῦ ἑξῆς, πρὸς ὃ τὸ ΒΓ λόγον ἔχει δοθέντα, δοθέν ἐστιν. ια. Ἐὰν μέγεθος μεγέθους δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, τὸ αὐτὸ καὶ συναμφοτέρου δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ, καὶ ἐὰν τὸ αὐτὸ συναμφοτέρου δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, τὸ αὐτὸ καὶ τοῦ λοιποῦ δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ. μέγεθος γὰρ τὸ ΑΒ τοῦ ΒΓ δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ· λέγω, ὅτι καὶ τοῦ ΑΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΑΒ τοῦ ΒΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΑΔ· λοιποῦ ἄρα τοῦ ΔΒ πρὸς τὸ ΒΓ λόγος ἐστὶ δοθείς. ἀνάπαλιν καὶ συνθέντι λόγος ἐστὶ τοῦ ΓΔ πρὸς τὸ ΔΒ δοθείς· ὁ αὐτὸς αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς τὸ ΔΕ· λόγος ἄρα καὶ τοῦ ΑΔ πρὸς τὸ ΔΕ δοθείς· δοθὲν δὲ τὸ ΑΔ· δοθὲν ἄρα καὶ τὸ ΔΕ· ὥστε καὶ λοιπὸν τὸ ΕΑ δοθέν ἐστιν. ἔστι δὲ καὶ ὅλου τοῦ ΑΓ πρὸς ὄλον τὸ ΕΒ λόγος δοθείς· ὥστε καὶ τοῦ ΕΒ πρὸς ΑΓ λόγος ἐστὶ δοθείς. καί ἐστι δοθὲν τὸ ΑΕ· τὸ ΒΑ ἄρα τοῦ ΑΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἀλλὰ δὴ τὸ ΒΑ συναμφοτέρου τοῦ ΑΓ δοθέντι 1. ὅλον – ἐστιν] om. a. γάρ] ἄρα P 2. μετὰ τοῦ ἐξῆς] μεθʼ οὗ a. 5. δοθέντος β. 6. ἔσται] comp. Vat.; item lin 9. 7. συναμφοτέρῳ (bis) β. 10. μεγέθους τοῦ a. 11. καί] om. v. Post καί add. τὸ αὐτὸ τὸ AB a 15. ἐστίν v, et sic per tot. propos. praeter l. 16 et p. 22, 12. 18. καί] om. Vat. τό (pr.)] om. a. 21. τὸ ΑΓ Vat. v. 22. Α E] ΕΑ a. καὶ τό a. μεῖζον ἔστω ἢ ἐν λόγῳ· λέγω, ὅτι τὸ αὐτὸ τὸ ΑΒ καὶ τοῦ λοιποῦ τοῦ ΒΓ δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΑΒ τοῦ ΑΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μεγεθος τὸ ΑΕ· λοιποῦ ἄρα τοῦ ΕΒ πρὸς τὸ ΑΓ λόγος ἐστὶ δοθείς· ὥστε καὶ τοῦ ΑΓ πρὸς τὸ ΕΒ λόγος ἐστὶ δοθείς· ὁ αὐτὸς αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ· καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς· καὶ ἀναστρέψαντι τοῦ ΔΑ πρὸς ΑΕ λόγος δοθείς· καὶ ἀνάπαλιν τοῦ ΕΑ πρὸς τὸ ΑΔ λόγος ἐστὶ δοθείς. καὶ δοθὲν τὸ ΑΕ· δοθὲν ἄρα καὶ ὅλον τὸ ΑΔ. καὶ ἐπεὶ ὅλου τοῦ ΑΓ πρὸς ὅλον τὸ ΕΒ λόγος ἐστὶ δοθείς, ὧν τοῦ ΑΔ πρὸς τὸ ΔΕ λόγος ἐστὶ δοθείς, ἔσται καὶ λοιποῦ τοῦ ΓΔ πρὸς λοιπὸν τὸ ΔΒ λόγος δοθείς· καὶ διελόντι τοῦ ΓΒ πρὸς τὸ ΔΒ λόγος ἐστὶ δοθείς· ὥστε καὶ τοῦ ΔΒ πρὸς τὸ ΒΓ λόγος ἐστὶ δοθείς. καί ἐστι δοθὲν τὸ ΔΑ· τὸ ΑΒ ἄρα τοῦ ΒΓ δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ιβ΄. Ἐὰν ᾖ τρία μεγέθη καὶ τὸ μὲν πρῶτον μετὰ τοῦ δευτέρου ᾖ δοθέν, ᾖ δὲ καὶ τὸ δεύτερον μετὰ τοῦ τρίτου δοθέν, τὸ πρῶτον τῷ τρίτῳ ἤτοι ἴσον ἐστίν, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν. ἔστω τρία μεγέθη τὰ ΑΒ, ΒΓ, ΓΔ, καὶ τὸ μὲν ΑΒ μετὰ τοῦ ΒΓ δοθὲν ἔστω τὸ ΑΓ, τὸ δὲ ΒΓ μετὰ τοῦ ΓΔ δοθὲν ἔστω τὸ ΒΔ· λέγω, ὅτι τὸ ΑΒ τῷ ΓΔ 1. τὸ αὐτό] καί a. καί] om. a. 2. ἔσται] comp. Vat., ἐστιν v. 7. ΔΑ] ΑΔ a. ἄρα] om. a. 8. ΕΔ] ΔΕ a. ὁ τοῦ a. 9. ἐστὶ δοθεὶς a. ἀνάπαλιν — 13 ἔσται] ἐπεί ἐστι λόγος τοῦ ΑΓ πρὸς ΕΒ δοθείς, δοθὲν τὸ ΑΕ· δοθὲν ἄρα καὶ ὅλον τὸ ΑΔ a. 12. τό (alt.)] om. v. 14. ΔΒ] ΔΒ τὰ ΔΒ v. 15. τό] om. a. 16. καὶ γάρ. at. 17. ΑΒ] supra ἤτοι ἴσον ἐστίν, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖ- ζόν ἐστιν. ἐπεὶ γὰρ δοθέν ἐστιν ἑκάτερον τῶν ΑΓ, ΒΔ, τὰ δὴ δοθέντα ἤτοι ἴσα ἐστὶν ἢ ἄνισα. ἔστω πρότερον ἴσα· ἴσον ἄρα ἐστὶ τὸ ΑΓ τῷ ΒΔ. κοινὸν ἀφῃρήσθω τὸ ΒΓ· λοιπὸν ἄρα τὸ ΑΒ λοιπῷ τῷ ΓΔ ἴσον ἐστίν. μὴ ἔστω δὴ ἴσα, ἀλλʼ ἔστω μεῖζον τὸ ΑΓ τοῦ ΒΔ, καὶ κείσθω τῷ ΒΔ ἴσον τὸ ΓΕ· δοθὲν δὲ τὸ ΒΔ· δοθὲν ἄρα καὶ τὸ ΓΕ· ἔστι δὲ καὶ ὅλον τὸ ΑΓ δοθέν· καὶ λοιπὸν τὸ ΑΕ δοθέν ἐστιν. καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΕΓ τῷ ΒΔ, κοινὸν ἀφῃρήσθω τὸ ΒΓ· λοιπὸν ἄρα τὸ ΒΕ λοιπῷ τῷ ΓΔ ἴσον ἐστίν. καί ἐστι δοθὲν τὸ ΑΕ· τὸ ΑΒ ἄρα τοῦ ΓΔ δοθέντι μεῖζόν ἐστιν. ιγ΄. Ἐὰν ᾖ τρία μεγέθη, καὶ τὸ μὲν πρῶτον πρὸς τὸ δεύτερον λόγον ἔχῃ δεδομένον, τὸ δὲ δεύτερον τοῦ τρίτου δοθέντι μεῖζον ᾖ ἢ ἐν λόγῳ, καὶ τὸ πρῶτον τοῦ τρίτου δοθέντι μεῖζον ἔσται ἢ ἐν λόγῳ. ἔστω τρία μεγέθη τὰ ΑΒ, ΓΔ, Ε, καὶ τὸ μὲν ΑΒ πρὸς τὸ ΓΔ λόγον ἐχέτω δεδομένον, τὸ δὲ ΓΔ τοῦ Ε δοθέντι μεῖζον ἔστω ἢ ἐν λόγῳ· λέγω, ὅτι καὶ τὸ ΑΒ τοῦ Ε δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ τὸ ΓΔ τοῦ Ε δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ, ἀφῃρήσθω τὸ δοθὲν μέγεθος τὸ ΓΖ· λοιποῦ. 3. Post ἐπεί ras. 3 litt. v. 4. ἄνισα] οὔ a. 7. ἐστί codd. 8. ἀλλά a. τοῦ ΒΔ] om. a. 11. ΑΕ] ΕΑ a. 14. τό (alt. )] τῷ Vat. 16. μέν] om. β. 20. μεγέθη] corr. ex μεγέθει m. 2 v. τά] corr. ex τό m. 2 Vat. 22. ἔσται v. ἄρα τοῦ ΔΖ πρὸς τὸ Ε λόγος ἐστὶ δοθείς. καὶ ἐπεὶ λόγος ἐστὶ δοθεὶς τοῦ ΑΒ πρὸς τὸ ΓΔ, ὁ αὐτὸς αὐτῷ γεγονέτω ὁ τοῦ ΑΒ πρὸς τὸ ΓΖ. λόγος ἄρα καὶ τοῦ AH πρὸς τὸ ΓΖ δοθείς. δοθὲν δὲ τὸ ΓΖ δοῦὲν ἄρα καὶ τὸ ΑΗ· καὶ λοιποῦ τοῦ ΗΒ πρὸς λοιπὸν τὸ ΔΖ λόγος ἐστὶ δοθείς. τοῦ δὲ ΔΖ πρὸς τὸ Ε λόγος ἐστὶ δοθείς· καὶ τοῦ ΗΒ ἄρα πρὸς τὸ Ε λόγος ἐστὶ δοθείς. καί ἐστὶ δοθὲν τὸ ΑΗ· τὸ ΑΒ ἄρα τοῦ Ε δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ιδ΄. Ἐὰν δύο μεγέθη πρὸς ἄλληλα λόγον ἔχῃ δεδομένον, καὶ προστεθῇ ἑκατέρῳ αὐτῶν δεδομένον μέγεθος, τὰ ὅλα πρὸς ἄλληλα ἤτοι λόγον ἕξει δεδομένον, ἢ τὸ ἕτε- ρον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. δύο γὰρ μεγέθη τὰ ΑΒ, ΓΔ πρὸς ἄλληλα λόγον ἐχέτω δεδομένον, καὶ προσκείσθω ἑκατέρῳ αὐτῶν δεδο- μένον μέγεθος, τό τε ΑΕ καὶ τὸ ΓΖ· λέγω, ὅτι τὰ ὅλα τὰ ΕΒ, ΖΔ πρὸς ἄλληλα ἤτοι λόγον ἔχει· δεδο- μένον, ἢ τὸ ἕτερον τοῦ ἑτέρου δοθέντι μεῖζόν ἐστιν ἢ ἐν λόγῳ. ἐπεὶ γὰρ δοθέν ἐστιν ἑκάτερον τῶν ΕΑ, ΖΓ, λόγος ἄρα τοῦ ΕΑ πρὸς τὸ ΖΓ δοθείς. καὶ εἰ μὲν ὁ αὐτὸς τῷ τοῦ ΑΒ πρὸς ΓΔ, ἔσται καὶ ὄλου τοῦ ΕΒ πρὸς ὅλον τὸ ΖΔ λόγος δοθείς. 1. ΖΔ a, item lin. 6. ἐστίν v, item lin. 2, 6. 2. δοθείς] om. a. ΓΔ δοθείς a. 3. γεγονέτω] ἔστω a. ΓΖ λόγος a. λόγος — 4. ΓΖ(pr.)] om. Vat. 13. ἔχει β. 17. τε] om. a. 21. ΑΕ P. 22. τό] om. a. 23. τῷ] αὐτῷ ὁ a. τὸ ΓΔ a. ἔσται] comp. Vat., omnibus litteris m. 2, et sic saepissime in sequentibus. μὴ ἔστω δὴ ὁ αὐτὸς καὶ πεποιήσθω ὡς τὸ ΑΒ πρὸς ΓΔ, οὕτως τὸ ΗΑ πρὸς ΓΖ· λόγος ἄρα καὶ τοῦ ΗΑ πρὸς τὸ ΖΓ δοθείς. δοθὲν δὲ τὸ ΖΓ· δοθὲν ἄρα καὶ τὸ ΗΑ. ἔστι δὲ καὶ τὸ ΕΑ δοθέν· καὶ λοι- πὸν ἄρα τὸ ΕΗ δοθέν ἐστιν. καὶ ἐπεὶ ὡς τὸ ΑΒ πρὸς τὸ ΓΔ, οὕτως τὸ ΗΑ πρὸς τὸ ΖΓ, λόγος ἄρα καὶ τοῦ ΗΒ πρὸς ΖΔ δοθείς. καί ἐστι δοθὲν τὸ ΕΗ· τὸ ΕΒ ἄρα τοῦ ΖΔ δοθέντι μεῖζόν ἐστι ἢ ἐν λόγῳ.