ΠΡΟΣ ΕΡΑΤΟΣΘΕΝΗΝ ΕΦΟΔΟΣ Ἀρχιμήδους Περὶ τῶν μηχανικῶν θεωρημάτων πρὸς Ἐρατοσθένην ἔφοδος Ἀρχιμήδης Ἐρατοσθένει εὖ πράττειν. Ἀπέστειλά σοι πρότερον τῶν εὑρημένων θεωρημάτων ἀναγράψας αὐτῶν τὰς προτάσεις φάμενος εὑρίσκειν ταύτας τὰς ἀποδείξεις, ἃς οὐκ εἶπον ἐπὶ τοῦ παρόντος ἦσαν δὲ τῶν ἀπεσταλμένων θεωρημάτων αἱ προτάσεις αἵδε · τοῦ μὲν πρώτου· ἐὰν εἰς πρίσμα ὀρθὸν παραλληλόγραμμον ἔχον βάσιν κύλινδρος ἐγγραφῇ τὰς μὲν βάσεις ἔχων ἐν τοῖς ἀπεναντίον παραλληλογράμμοις, τὰς δὲ πλευρὰς ἐπὶ τῶν λοιπῶν τοῦ πρίσματος ἐπιπέδων, καὶ διά τε τοῦ κέντρου τοῦ κύκλου, ὅς ἐστι βάσις τοῦ κυλίνδρου, καὶ μιᾶς πλευρᾶς τοῦ τετραγώνου τοῦ ἐν τῷ κατεναντίον ἐπιπέδῳ ἀχθῇ ἐπίπεδον, τὸ ἀχθὲν ἐπιπίπεδον ἀποτεμεῖ τμῆμα ἀπὸ τοῦ κυλίνδρου, ὅ ἐστι περιεχόμενον ὑπὸ δύο ἐπιπέδων καὶ ἐπιφανείας κυλίνδρου, ἑνὸς μὲν τοῦ ἀχθέντος, ἑτέρου δὲ ἐν ᾧ ἡ βάσις ἐστὶν τοῦ κυλίνδρου, τῆς δὲ ἐπιφανείας τῆς μεταξὺ τῶν εἰρημένων ἐπιπέδων, τὸ δὲ ἀποτμηθὲν ἀπὸ τοῦ κυλίνδρου τμῆμα ἕκτον μέρος ἐστὶ τοῦ ὅλου πρίσματος. Τοῦ δὲ ἑτέρου θεωρήματος ἡ πρότασις ἥδε ἐὰν εἰς κύβον κύλινδρος ἐγγραφῇ τὰς μὲν βάσεις ἔχων πρὸς τοῖς κατεναντίον παραλληλογράμμοις, τὴν δὲ ἐπιφάνειαν τῶν λοιπῶν τεσσάρων ἐπιπέδων ἐφαπτομένην, ἐγγραφῇ δὲ καὶ ἄλλος κύλινδρος εἰς τὸν αὐτὸν κύβον τὰς μὲν βάσεις ἔχων ἐν ἄλλοις παραλληλογράμμοις, τὴν δὲ ἐπιφάνειαν τῶν λοιπῶν τεσσάρων ἐπιπέδων ἐφαπτομένην, τὸ περιληφθὲν σχῆμα ὑπὸ τῶν ἐπιφανειῶν τῶν κυλίνδρων, ὅ ἐστιν ἐν ἀμφοτέροις τοῖς κυλίνδροις, δίμοιρόν ἐστι τοῦ ὅλου κύβου. Συμβαίνει δὲ ταῦτα τὰ θεωρήματα διαφέρειν τῶν πρότερον εὑρημένων ἐκεῖνα μὲν γὰρ τὰ σχήματα, τά τε κωνοειδῆ καὶ σφαιροειδῆ καὶ τὰ τμήματα αὐτῶν, τῷ μεγέθει σχήμασι κώνων καὶ κυλίνδρων συνεκρίναμεν, ἐπιπέδοις δὲ περιεχομένῳ στερεῷ σχήματι οὐδὲν αὐτῶν ἴσον ἐὸν εὕρηται, τούτων δὲ τῶν σχημάτων τῶν δυσὶν ἐπιπέδοις καὶ ἐπιφανείαις κυλίνδρων ἕκαστον ἑνὶ τῶν ἐπιπέδοις περιεχομένων στερεῶν σχημάτων ἴσον εὑρίσκεται. Τούτων δὴ τῶν θεωρημάτων τὰς ἀποδείξεις ἐν τῷδε τῷ βιβλίῳ γράψας ἀποστελῶ σοι. Ὁρῶν δέ σε, καθάπερ λέγω, σπουδαῖον καὶ φιλοσοφίας προεστῶτα ἀξιολόγως καὶ τὴν ἐν τοῖς μαθήμασιν κατὰ τὸ ὑποπίπτον θεωρίαν τετιμηκότα ἐδοκίμασα γράψαι σοι καὶ εἰς τὸ αὐτὸ βιβλίον ἐξορίσαι τρόπου τινὸς ἰδιότητα, καθʼ ὅν σοι παρεχόμενον ἔσται λαμβάνειν ἀφορμὰς εἰς τὸ δύνασθαί τινα τῶν ἐν τοῖς μαθήμασι θεωρεῖν διὰ τῶν μηχανικῶν. Τοῦτο δὲ πέπεισμαι χρήσιμον εἶναι οὐδὲν ἦσσον καὶ εἰς τὴν ἀπόδειξιν αὐτῶν τῶν θεωρημάτων. Καὶ γάρ τινα τῶν πρότερόν μοι φανέντων μηχανικῶς ὕστερον γεωμετρικῶς ἀπεδείχθη διὰ τὸ χωρὶς ἀποδείξεως εἶναι τὴν διὰ τούτου τοῦ τρόπου θεωρίαν ἑτοιμότερον γάρ ἐστι προλαβόντα διὰ τοῦ τρόπου γνῶσίν τινα τῶν ζητημάτων πορίσασθαι τὴν ἀπόδειξιν μᾶλλον ἢ μηδενὸς ἐγνωσμένου ζητεῖν. Διόπερ καὶ τῶν θεωρη μάτων τούτων, ὧν Εὔδοξος ἐξηύρηκεν πρῶτος τὴν ἀπόδειξιν, περὶ τοῦ κώνου καὶ τῆς πυραμίδος, ὅτι τρίτον μέρος ὁ μὲν κῶνος τοῦ κυλίνδρου, ἡ δὲ πυραμὶς τοῦ πρίσματος, τῶν βάσιν ἐχόντων τὴν αὐτὴν καὶ ὕψος ἴσον, οὐ μικρὰν ἀπονείμαι ἄν τις Δημοκρίτῳ μερίδα πρώτῳ τὴν ἀπόφασιν τὴν περὶ τοῦ εἰρημένου σχήματος χωρὶς ἀποδείξεως ἀποφηναμένῳ. Ἡμῖν δὲ συμβαίνει καὶ τοῦ νῦν ἐκδιδομένου θεωρήματος τὴν εὕρεσιν ὁμοίαν ταῖς πρότερον γεγενῆσθαι ἠβουλήθην δὲ τὸν τρόπον ἀναγράψας ἐξενεγκεῖν ἅμα μὲν καὶ διὰ τὸ προειρηκέναι ὑπὲρ αὐτοῦ, μή τισιν δοκῶμεν κενὴν φωνὴν καταβεβλῆσθαι, ἅμα δὲ καὶ πεπεισμένος εἰς τὸ μάθημα οὐ μικρὰν ἂν συμβαλέσθαι χρείαν ὑπολαμβάνω γάρ τινας ἢ τῶν ὄντων ἢ ἐπιγινομένων διὰ τοῦ ἀποδειχθέντος τρόπου καὶ ἄλλα θεωρήματα οὔπω ἡμῖν συνπαραπεπτωκότα εὑρήσειν. Γράφομεν οὖν πρῶτον τὸ καὶ πρῶτον φανὲν διὰ τῶν μηχανικῶν, ὅτι πᾶν τμῆμα ὀρθογωνίου κώνου τομῆς ἐπίτριτόν ἐστιν τριγώνου τοῦ βάσιν ἔχοντος τὴν αὐτὴν καὶ ὕψος ἴσον, μετὰ δὲ τοῦτο ἕκαστον τῶν διὰ τοῦ αὐτοῦ τρόπου θεωρηθέντων ἐπὶ τέλει δὲ τοῦ βιβλίου γράφομεν τὰς γεωμετρι κὰς ἀποδείξεις ἐκείνων τῶν θεωρημάτων, ὧν τὰς προ τάσεις ἀπεστείλαμέν σοι πρότερον . ΠΡΟΛΑΜΒΑΝΟΜΕΝΑ Ἐὰν ἀπὸ μεγέθους μέγεθος ἀφαιρεθῇ, τὸ δὲ αὐτὸ σημεῖον κέν τρον τοῦ βάρους ᾖ τοῦ τε ὅλου καὶ τοῦ ἀφαιρουμένου, τοῦ λοιποῦ τὸ αὐτὸ σημεῖον κέντρον ἐστὶ τοῦ βάρους. Ἐὰν ἀπὸ μεγέ θους μέγεθο ς ἀφαιρεθῇ, ἦ δὲ μὴ τὸ αὐτὸ σημεῖον κέντρον τοῦ βάρους τοῦ τε ὅλου μεγέθους καὶ τοῦ ἀφαιρουμένου μεγέθους, τὸ κέντρον ἐστὶ τοῦ βάρους τοῦ λοιποῦ μεγέθους ἐπὶ τῆς εὐθείας τῆς ἐπιζευγνυούσης τὰ κέντρα τοῦ βάρους τοῦ τε ὅλου καὶ τοῦ ἀφαιρουμέ νου ἐκβεβλημένης καὶ ἀφαιρεθείσης ἀπʼ αὐτῆς πρὸς τὴν μεταξὺ τῶν εἰρημένων κέντρων τοῦ βάρους τοῦτον ἐχούσης τὸν λόγον, ὃν ἔχει τὸ βάρος τοῦ ἀφαιρουμένου μεγέθους πρὸς τὸ λοιπὸν βάρος τοῦ λοιποῦ μεγέθους. Ἐὰν ὁποσωνοῦν μεγεθέων τὸ κέντρον τοῦ βάρους ἐπὶ τῆς αὐτῆς εὐθείας ᾖ, καὶ τοῦ ἐκ πάντων συγκειμένου μεγέθους τὸ κέντρον ἔσται ἐπὶ τῆς αὐτῆς εὐθείας. Πάσης εὐθείας τὸ κέντρον ἐστὶ τοῦ βάρους ἡ διχοτομία τῆς εὐθείας. Παντὸς τριγώνου τὸ κέντρον ἐστὶν τοῦ βάρους τὸ σημεῖον, καθʼ ὃ αἱ ἐκ τῶν γωνιῶν τοῦ τριγώνου ἐπὶ μέσας τὰς πλευρὰς ἀγόμεναι εὐθεῖαι τέμνουσιν ἀλλήλας. Παντὸς παραλληλογράμμου τὸ κέντρον ἐστὶν τοῦ βάρους τὸ σημεῖον, καθʼ ὃ αἱ διάμετροι συμπίπτουσιν. Κύκλου τὸ κέντρον τοῦ βάρους ἐστὶν ὃ καὶ τοῦ κύκλου ἐστὶ κέντρον. Παντὸς κυλίνδρου τὸ κέντρον τοῦ βάρους ἐστὶν ἡ διχοτομία τοῦ ἄξονος. Παντὸς πρίσματος τὸ κέντρον ἐστὶ τοῦ βάρους ἡ διχοτομία τοῦ ἄξονος. Παντὸς κώνου τὸ κέντρον ἐστὶν τοῦ βάρους ἐπὶ τοῦ ἄξονος διαιρεθέντος οὕτως, ὥστε τὸ πρὸς τῇ κορυφῇ τμῆμα τριπλάσιον εἶναι τοῦ λοιποῦ. Χρησόμεθα δὲ καὶ ἐν τῷ προγεγραμμένῳ Κωνοειδῶν τῷδε τῷ θεωρήματι· Ἐὰν ὁποσαοῦν μεγέθη ἄλλοις μεγέθεσιν ἴσοις τὸ πλῆθος κατὰ δύο τὸν αὐτὸν ἔχῃ λόγον τὰ ὁμοίως τεταγμένα, ᾖ δὲ τὰ πρῶτα μεγέθη πρὸς ἄλλα μεγέθη ἐν λόγοις ὁποιοισοῦν, ἢ τὰ πάντα ἤ τινα αὐτῶν, καὶ τὰ ὕστερον μεγέθη πρὸς ἄλλα μεγέθη τὰ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις ᾖ, πάντα τὰ πρῶτα μεγέθη πρὸς πάντα τὰ λεγόμενα τὸν αὐτὸν ἔχει λόγον, ὃν ἔχει πάντα τὰ ὕστερον πρὸς πάντα τὰ λεγόμενα. α΄. Ἔστω τμῆμα τὸ ΑΒΓ περιεχόμενον ὑπὸ εὐθείας τῆς ΑΓ καὶ ὀρθογωνίου κώνου τομῆς τῆς ΑΒΓ, καὶ τετμήσθω δίχα ἡ ΑΓ τῷ △, καὶ παρὰ τὴν διάμετρον ἤχθω ἡ △ΒΕ, καὶ ἐπεζεύχθωσαν αἱ ΑΒ, ΒΓ. Λέγω ὅτι ἐπίτριτόν ἐστιν τὸ ΑΒΓ τμῆμα τοῦ ΑΒΓ τριγώνου. Ἤχθωσαν ἀπὸ τῶν Α, Γ σημείων ἡ μὲν ΑΖ παρὰ τὴν △ΒΕ, ἡ δὲ ΓΖ ἐπιψαύουσα τῆς τομῆς, καὶ ἐκβεβλήσ θω ἡ ΓΒ ἐπὶ τὸ Κ, καὶ κείσθω τῇ ΓΚ ἴση ἡ ΚΘ . Νοείσθω ζυγὸς ὁ ΓΘ καὶ μέσον αὐτοῦ τὸ Κ καὶ τῇ Ε△ παράλληλος τυχοῦσα ἡ ΜΞ. Ἐπεὶ οὖν παραβολή ἐστιν ἡ ΓΒΑ, καὶ ἐφάπτεται ἡ ΓΖ, καὶ τεταγμένως ἡ Γ△, ἴση ἐστὶν ἡ ΕΒ τῇ Β△ τοῦτο γὰρ ἐν τοῖς στοιχείοις δείκνυται · διὰ δὴ τοῦτο, καὶ διότι παράλληλοί εἰσιν αἱ ΖΑ, ΜΞ τῇ Ε△, ἴση ἐστὶν καὶ ἡ μὲν ΜΝ τῇ ΝΞ, ἡ δὲ ΖΚ τῇ ΚΑ. Καὶ ἐπεί ἐστιν ὡς ἡ ΓΑ πρὸς ΑΞ, οὕτως ἡ ΜΞ πρὸς ΞΟ τοῦτο γὰρ ἐν λήμματι δείκνυται , ὡς δὲ ἡ ΓΑ πρὸς ΑΞ, οὕτως ἡ ΓΚ πρὸς ΚΝ, καὶ ἴση ἐστὶν ἡ ΓΚ τῇ ΚΘ, ὡς ἄρα ἡ ΘΚ πρὸς ΚΝ. οὕτως ἡ ΜΞ πρὸς ΞΟ. Καὶ ἐπεὶ τὸ Ν σημεῖον κέντρον τοῦ βάρους τῆς ΜΞ εὐθείας ἐστίν, ἐπείπερ ἴση ἐστὶν ἡ ΜΝ τῇ ΝΞ, ἐὰν ἄρα τῇ ΞΟ ἴσην θῶμεν τὴν ΤΗ καὶ κέντρον τοῦ βάρους αὐτῆς τὸ Θ, ὅπως ἴση ᾖ ἡ ΤΘ τῇ ΘΗ, ἰσορροπήσει ἡ ΤΘΗ τῇ ΜΞ αὐτοῦ μενούσῃ διὰ τὸ ἀντιπεπονθότως τετμῆσθαι τὴν ΘΝ τοῖς ΤΗ, ΜΞ βάρεσιν, καὶ ὡς τὴν ΘΚ πρὸς ΚΝ, οὕτως τὴν ΜΞ πρὸς τὴν ΗΤ ὥστε τοῦ ἐξ ἀμφοτέρων βάρους κέντρον ἐστὶν τοῦ βάρους τὸ Κ. Ὁμοίως δὲ καὶ ὅσαι ἂν ἀχθῶσιν ἐν τῷ ΖΑΓ τριγώνῳ παράλληλοι τῇ Ε△ ἰσορροπήσουσιν αὐτοῦ μένουσαι ταῖς ἀπολαμβανομέναις ἀπʼ αὐτῶν ὑπὸ τῆς τομῆς μετενεχθείσαις ἐπὶ τὸ Θ, ὥστε εἶναι τοῦ ἐξ ἀμφοτέ ρων κέντρον τοῦ βάρους τὸ Κ. Καὶ ἐπεὶ ἐκ μὲν τῶν ἐν τῷ ΓΖΑ τριγώνῳ τὸ ΓΖΑ τρίγωνον συνέστηκεν, ἐκ δὲ τῶν ἐν τῇ τομῇ ὁμοίως τῇ ΞΟ λαμβανομένων συνέστηκε τὸ ΑΒΓ τμῆμα, ἰσορροπήσει ἄρα τὸ ΖΑΓ τρίγωνον αὐτοῦ μένον τῷ τμήματι τῆς τομῆς τεθέντι περὶ κέντρον τοῦ βάρους τὸ Θ κατὰ τὸ Κ σημεῖον, ὥστε τοῦ ἐξ ἀμφοτέρων κέντρον εἶναι τοῦ βάρους τὸ Κ. Τετμήσθω δὴ ἡ ΓΚ τῷ Χ, ὥστε τριπλασίαν εἶναι τὴν ΓΚ τῆς ΚΧ ἔσται ἄρα τὸ Χ σημεῖον κέντρον βάρους τοῦ ΑΖΓ τριγώνου δέδεικται γὰρ ἐν τοῖς Ἰσορροπικοῖς. Ἐπεὶ οὖν ἰσόρροπον τὸ ΖΑΓ τρίγωνον αὐτοῦ μένον τῷ ΒΑΓ τμήματι κατὰ τὸ Κ τεθέντι περὶ τὸ Θ κέντρον τοῦ βάρους, καί ἐστιν τοῦ ΖΑΓ τριγώνου κέντρον βάρους τὸ Χ, ἔστιν ἄρα ὡς τὸ ΑΖΓ τρίγωνον πρὸς τὸ ΑΒΓ τμῆμα κείμενον περὶ τὸ Θ κέντρον, οὕτως ἡ ΘΚ πρὸς ΧΚ. Τριπλασία δὲ ἐστιν ἡ ΘΚ τῆς ΚΧ τριπλάσιον ἄρα καὶ τὸ ΑΖΓ τρίγωνον τοῦ ΑΒΓ τμήματος Ἔστι δὲ καὶ τὸ ΖΑΓ τρίγωνον τετραπλάσιον τοῦ ΑΒΓ τριγώνου διὰ τὸ ἴσην εἶναι τὴν μὲν ΖΚ τῇ ΚΑ, τὴν δὲ Α△ τῇ △Γ ἐπίτριτον ἄρα ἐστὶν τὸ ΑΒΓ τμῆμα τοῦ ΑΒΓ τριγώνου. Τοῦτο οὖν φανερόν ἐστιν . β΄. Τοῦτο δὴ διὰ μὲν τῶν νῦν εἰρημένων οὐκ ἀποδέδεικται, ἔμφασιν δὲ τινα πεποίηκε τὸ συμπέρασμα ἀληθὲς εἶναι διόπερ ἡμεῖς ὁρῶντες μὲν οὐκ ἀποδεδειγμένον, ὑπονοοῦντες δὲ τὸ συμπέρασμα ἀλτηθὲς εἶναι, τάξομεν τὴν γεωμετρουμένην ἀπόδειξιν ἐξευρόντες αὐτοὶ τὴν ἐκδοθεῖσαν πρότερον. Ὅτι δὲ πᾶσα σφαῖρα τετραπλασία ἐστὶν τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας, καὶ ὁ κύλινδρος ὁ βάσιν μὲν ἔχων ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας, ἡμιόλιος τῆς σφαίρας ἐστίν, ὧδε θεωρεῖται κατὰ τρόπον τόνδε· Ἔστω γάρ τις σφαῖρα, ἐν ᾗ μέγιστος κύκλος ὁ ΑΒΓ△, διάμετροι δὲ αἱ ΑΓ, Β△ πρὸς ὀρθὰς ἀλλήλαις οὖσαι, ἔστω δὲ κύκλος ἐν τῇ σφαίρᾳ περὶ διάμετρον τὴν Β△ ὀρθὸς πρὸς τὸν ΑΒΓ△ κύκλον, καὶ ἀπὸ τοῦ ὀρθοῦ κύκλου τούτου κῶνος ἀναγεγράφθω κορυφὴν ἔχων τὸ Α σημεῖον, καὶ ἐκβληθείσης τῆς ἐπιφανείας αὐτοῦ τετμήσθω ὁ κῶνος ἐπιπέδῳ διὰ τοῦ Γ παρὰ τὴν βάσιν ποιήσει δὴ κύκλον ὀρθὸν πρὸς τὴν ΑΓ, καὶ διάμετρος αὐτοῦ ἡ ΕΖ. Ἀπὸ δὲ τοῦ κύκλου τούτου κύλινδρος ἀναγεγράφθω ἄξονα ἔχων τῇ ΑΓ ἴσον, πλευραὶ δὲ ἔστωσαν τοῦ κυλίνδρου αἱ ΕΛ, ΖΗ· καὶ ἐκβεβλήσθω ἡ ΓΑ, καὶ κείσθω αὐτῇ ἴση ἡ ΑΘ, καὶ νοείσθω ζυγὸς ὁ ΓΘ, μέσον δὲ αὐτοῦ τὸ Α, καὶ ἤχθω τις παράλληλος ὑπάρχουσα τῇ Β△ ἡ ΜΝ, τεμνέτω δὲ αὕτη τὸν μὲν ΑΒΓ△ κύκλον κατὰ τὰ Ξ, Ο, τὴν δὲ ΑΓ διάμετρον κατὰ τὸ Σ, τὴν δὲ ΑΕ εὐθεῖαν κατὰ τὸ Π, τὴν δὲ ΑΖ κατὰ τὸ Ρ, καὶ ἀπὸ τῆς ΜΝ εὐθείας ἐπίπεδον ἀνεστάτω ὀρθὸν πρὸς τὴν ΑΓ · ποιήσει δὴ τοῦτο ἐν μὲν τῷ κυλίνδρῳ τομὴν κύκλον, οὗ ἔσται διάμετρος ἡ ΜΝ, ἐν δὲ τῇ ΑΒΓ△ σφαίρᾳ κύκλον, οὗ ἔσται διάμετρος ἡ ΞΟ, ἐν δὲ τῷ ΑΕΖ κώνῳ κύκλον, οὗ ἔσται διάμετρος ἡ ΠΡ. Καὶ ἐπεὶ ἴσον ἐστὶν τὸ ὑπὸ ΓΑ, ΑΣ τῷ ὑπὸ ΜΣ, ΣΠ, ἴση γὰρ ἡ μὲν ΑΓ τῇ ΣΜ, ἡ δὲ ΑΣ τῇ ΠΣ, τῷ δὲ ὑπὸ ΓΑ, ΑΣ ἴσον ἐστὶν τὸ ἀπὸ ΑΞ, τουτέστιν τὰ ἀπὸ ΞΣ, ΣΠ, ἴσον ἄρα τὸ ὑπὸ τῶν ΜΣ, ΣΠ τοῖς ἀπὸ τῶν ΞΣ, ΣΠ, Καὶ ἐπεί ἐστιν ὡς ἡ ΓΑ πρὸς ΑΣ, οὕτως ἡ ΜΣ πρὸς ΣΠ, ἴση δὲ ἡ ΓΑ τῇ ΑΘ, ὡς ἄρα ἡ ΘΑ πρὸς ΑΣ, ἡ ΜΣ πρὸς ΣΠ, τουτέστι τὸ ἀπὸ ΜΣ πρὸς τὸ ὑπὸ ΜΣ, ΣΠ. Τῷ δὲ ὑπὸ ΜΣ, ΣΠ ἴσα ἐδείχθη τὰ ἀπὸ ΞΣ, ΣΠ· ὡς ἄρα ἡ ΑΘ πρὸς ΑΣ, οὕτως τὸ ἀπὸ ΜΣ πρὸς τὰ ἀπὸ ΞΣ, ΣΠ. Ὡς δὲ τὸ ἀπὸ ΜΣ πρὸς τὰ ἀπὸ ΞΣ, ΣΠ, οὕτως τὸ ἀπὸ ΜΝ πρὸς τὰ ἀπὸ ΞΟ, ΠΡ, ὡς δὲ τὸ ἀπὸ ΜΝ πρὸς τὰ ἀπὸ ΞΟ, ΠΡ, οὕτως ὁ κύκλος ὁ ἐν τῷ κυλίνδρῳ, οὗ διάμετρος ἡ ΜΝ, πρὸς ἀμφοτέρους τοὺς κύκλους τόν τε ἐν τῷ κώνῳ, οὗ διάμετρος ἡ ΠΡ, καὶ τὸν ἐν τῇ σφαίρᾳ, οὗ ἐστιν διάμετρος ἡ ΞΟ ὡς ἄρα ἡ ΘΑ πρὸς ΑΣ, οὕτως ὁ κύκλος ὁ ἐν τῷ κυλίνδρῳ πρὸς τοὺς κύκλους τόν τε ἐν τῇ σφαίρᾳ καὶ τὸν ἐν τῷ κώνῳ. Ἐπεὶ οὖν ὡς ἡ ΘΑ πρὸς ΑΣ, οὕτως αὐτὸς ὁ κύκλος ὁ ἐν τῷ κυλίνδρῳ αὐτοῦ μένων ἀμφοτέροις τοῖς κύκλοις, ὧν εἰσιν διάμετροι αἱ ΞΟ, ΠΡ, μετενεχθεῖσιν καὶ τεθεῖσιν οὕτως ἐπὶ τὸ Θ, ὥστε ἑκατέρου αὐτῶν κέντρον εἶναι τοῦ βάρους τὸ Θ, ἰσορροπήσουσι κατὰ τὸ Α σημεῖον. Ὁμοίως δὲ δειχθήσεται, καὶ ἐὰν ἄλλη ἀχθῇ ἐν τῷ ΛΖ παραλληλογράμμῳ παρὰ τὴν ΕΖ, καὶ ἀπὸ τῆς ἀχθείσης ἐπίπεδον ἀνασταθῇ ὀρθὸν πρὸς τὴν ΑΓ, ὅτι ὁ γενόμενος κύκλος ἐν τῷ κυλίνδρῳ ἰσορροπήσει περὶ τὸ Α σημεῖον αὐτοῦ μένων ἀμφοτέροις τοῖς κύκλοις τῷ τε ἐν τῇ σφαίρᾳ γινομένῳ καὶ τῷ ἐν τῷ κώνῳ μετενεχθεῖσι καὶ τεθεῖσιν ἐπὶ τοῦ ζυγοῦ κατὰ τὸ Θ οὕτως, ὥστε ἑκατέρου αὐτῶν κέντρον εἶναι τοῦ βάρους τὸ Θ. Συμπληρωθέντος οὖν τοῦ κυλίνδρου ὑπὸ τῶν ληφθέντων κύκλων καὶ τῆς σφαίρας καὶ τοῦ κώνου ἰσορροπήσει ὁ κύλινδρος περὶ τὸ Α σημεῖον αὐτοῦ μένων συναμφοτέροις τῇ τε σφαίρᾳ καὶ τῷ κώνῳ μετενεχθεῖσι καὶ τεθεῖσιν ἐπὶ τοῦ ζυγοῦ κατὰ τὸ Θ, ὥστε ἑκατέρου αὐτῶν κέντρον εἶναι τοῦ βάρους τὸ Θ. Ἐπεὶ οὖν ἰσορροπεῖ τὰ εἰρημένα στερεὰ κατὰ τὸ Α σημεῖον τοῦ μὲν κυλίνδρου μένοντος περὶ κέντρον τοῦ βάρους τὸ Κ, τῆς δὲ σφαίρας καὶ τοῦ κώνου μετενηνεγμένων, ὡς εἴρηται, περὶ κέντρον βάρους τὸ Θ, ἔσται ὡς ἡ ΘΑ πρὸς ΑΚ, οὕτως ὁ κύλινδρος πρὸς τὴν σφαῖραν καὶ τὸν κῶνον. Διπλασία δὲ ἡ ΘΑ τῆς ΑΚ διπλασίων ἄρα καὶ ὁ κύλινδρος συναμφοτέρου τῆς τε σφαίρας καὶ τοῦ κώνου. Αὐτοῦ δὲ τοῦ κώνου τριπλασίων ἐστί τρεῖς ἄρα κῶνοι ἴσοι εἰσὶ δυσὶ κώνοις τοῖς αὐτοῖς καὶ δυσὶ σφαίραις. Κοινοὶ ἀφῃρήσθωσαν δύο κῶνοι εἷς ἄρα κῶνος ὁ ἔχων τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΕΖ ἴσος ἐστὶ ταῖς εἰρημέναις δυσὶ σφαίραις. Ὁ δὲ κῶνος, οὗ τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΕΖ, ἴσος ἐστὶν ὀκτὼ κώνοις, ὧν ἐστι τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΒ△, διὰ τὸ διπλῆν εἶναι τὴν ΕΖ τῆς Β△. Οἱ ἄρα ὀκτὼ κῶνοι οἱ εἰρημένοι ἴσοι εἰσὶ δυσὶ σφαίραις. Τετραπλασίων ἄρα ἐστὶν ἡ σφαῖρα, ἧς μέγιστος κύκλος ὁ ΑΒΓ△, τοῦ κώνου, οὗ κορυφὴ μὲν ἐστι τὸ Α σημεῖον, βάσις δὲ ὁ περὶ διάμετρον τὴν Β△ κύκλος ὀρθὸς ὧν πρὸς τὴν ΑΓ. Ἤχθωσαν δὴ διὰ τῶν Β, △ σημείων ἐν τῷ ΛΖ παραλληλογράμμῳ τῇ ΑΓ παράλληλοι αἱ ΦΒΧ, Ψ△Ω, καὶ νοείσθω κύλινδρος, οὗ βάσεις μὲν οἱ περὶ διαμέτρους τὰς ΦΨ, ΧΩ κύκλοι, ἄξων δὲ ὁ ΑΓ. Ἐπεὶ οὖν διπλάσιός ἐστιν ὁ κύλινδρος, οὗ ἐστι τὸ διὰ τοῦ ἄξονος παραλληλόγραμμον τὸ ΦΩ, τοῦ κυλίνδρου, οὗ ἐστι τὸ διὰ τοῦ ἄξονος παραλ ληλόγραμμον τὸ Φ△, αὐτὸς δὲ οὗτος τριπλασίων ἐστὶν τοῦ κώνου, οὗ ἐστι τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΒ△, ὡς ἐν τοῖς Στοιχείοις, ἑξαπλασίων ἄρα ὁ κύλινδρος, οὗ ἐστι τὸ διὰ τοῦ ἄξονος παραλληλόγραμμον τὸ ΦΩ, τοῦ κώνου, οὗ τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΒ△. Ἐδείχθη δὲ τοῦ αὐτοῦ κώνου τετραπλασία οὖσα ἡ σφαῖρα, ἧς μέγιστός ἐστιν κύκλος ὁ ΑΒΓ△· ἡμιόλιος ἄρα ὁ κύλινδρος τῆς σφαίρας ὅπερ ἔδει δειχθῆναι. Τούτου τεθεωρημένου, διότι πᾶσα σφαῖρα τετραπλασία ἐστὶ τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὸν μέγιστον κύκλον, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας, ἡ ἔννοια ἐγένετο ὅτι πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶ τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ· ὑπόληψις γὰρ ἦν καὶ διότι πᾶς κύκλος ἴσος ἐστὶ τριγώνῳ τῷ βάσιν μὲν ἔχοντι τὴν τοῦ κύκλου περιφέρειαν, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τοῦ κύκλου, καὶ διότι πᾶσα σφαῖρα ἴση ἐστὶ κώνῳ τῷ βάσιν μὲν ἔχοντι τὴν ἐπιφάνειαν τῆς σφαίρας, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας. γ΄. Θεωρεῖται δὲ διὰ τοῦ τρόπου τούτου καὶ ὅτι ὁ κύλινδρος ὁ τὴν μὲν βάσιν ἔχων ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῷ σφαιροειδεῖ, ὕψος δὲ ἴσον τῷ ἄξονι τοῦ σφαιροειδοῦς, ἡμιόλιός ἐστι τοῦ σφαιροειδοῦς· τούτου δὲ θεωρηθέντος φανερὸν ὅτι παντὸς σφαιροειδοῦς ἐπιπέδῳ τμηθέντος διὰ τοῦ κέντρου ὀρθῷ πρὸς τὸν ἄξονα τὸ ἥμισυ τοῦ σφαιροειδοῦς διπλάσιόν ἐστι τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὴν αὐτὴν τῷ τμήματι καὶ ἄξονα τὸν αὐτόν. Ἔστω γάρ τι σφαιροειδὲς καὶ τετμήσθω ἐπιπέδῳ διὰ τοῦ ἄξονος, καὶ γινέσθω ἐν τῇ ἐπιφανείᾳ αὐτοῦ ὀξυγωνίου κώνου τομὴ ἡ ΑΒΓ△, διάμετροι δὲ αὐτῆς ἔστωσαν αἱ ΑΓ, Β△, κέντρον δὲ τὸ Κ, ἔστω δὲ κύκλος ἐν τῷ σφαιροειδεῖ περὶ διάμετρον τὴν Β△ ὀρθὸς πρὸς τὴν ΑΓ, νοείσθω δὲ κῶνος βάσιν ἔχων τὸν εἰρημένον κύκλον, κορυφὴν δὲ τὸ Α σημεῖον, καὶ ἐκβληθείσης τῆς ἐπιφανείας αὐτοῦ τετμήσθω ὁ κῶνος ἐπιπέδῳ διὰ τοῦ Γ παρὰ τὴν βάσιν ἔσται δὴ ἡ τομὴ αὐτοῦ κύκλος ὀρθὸς πρὸς τὴν ΑΓ, διάμετρος δὲ αὐτοῦ ἡ ΕΖ. Ἔστω δὲ καὶ κύλινδρος βάσιν μὲν ἔχων τὸν αὐτὸν κύκλον, οὗ διάμετρος ἡ ΕΖ, ἄξονα δὲ τὴν ΑΓ εὐθεῖαν, καὶ ἐκβληθείσης τῆς ΓΑ κείσθω αὐτῇ ἴση ἡ ΑΘ, καὶ νοείσθω ζυγὸς ὁ ΘΓ, μέσον δὲ αὐτοῦ τὸ Α, ἤχθω δέ τις ἐν τῷ ΛΖ παραλληλογράμμῳ παρὰ τὴν ΕΖ ἡ ΜΝ, καὶ ἀπὸ τῆς ΜΝ ἐπίπεδον ἀνεστάτω ὀρ θὸν πρὸς τὴν ΑΓ ποιήσει δὴ τοῦτο ἐν μὲν τῷ κυλίνδρῳ τομὴν κύκλον, οὗ διάμετρος ἡ ΜΝ, ἐν δὲ τῷ σφαιροειδεῖ τομὴν κύκλον, οὗ διάμετρος ἡ ΞΟ, ἐν δὲ τῷ κώνῳ τομὴν κύκλον, οὗ διάμετρος ἡ ΠΡ. Καὶ ἐπεί ἐστιν ὡς ἡ ΓΑ πρὸς τὴν ΑΣ, οὕτως ἡ ΕΑ πρὸς ΑΠ, τουτέστιν ἡ ΜΣ πρὸς τὴν ΣΠ, ἴση δὲ ἡ ΓΑ τῇ ΑΘ, ὡς ἄρα ἡ ΘΑ πρὸς ΑΣ, οὕτως ἡ ΜΣ πρὸς ΣΠ. Ὡς δὲ ἡ ΜΣ πρὸς ΣΠ, οὕτως τὸ ἀπὸ ΜΣ πρὸς τὸ ὑπὸ ΜΣ, ΣΠ· τῷ δὲ ὑπὸ ΜΣ, ΣΠ ἴσα τὰ ἀπὸ τῶν ΠΣ, ΣΞ. Ἐπεὶ γάρ ἐστιν ὡς τὸ ὑπὸ ΑΣ, ΣΓ πρὸς τὸ ἀπὸ ΣΞ, οὕτως τὸ ὑπὸ ΑΚ, ΚΓ, τουτέστιν τὸ ἀπὸ ΑΚ, πρὸς τὸ ἀπὸ ΚΒ ἀμφότεροι γὰρ οἱ λόγοι ἐν τῷ τῆς πλαγίας πρὸς τὴν ὀρθίαν εἰσίν , ὡς δὲ τὸ ἀπὸ ΑΚ πρὸς τὸ ἀπὸ ΚΒ, οὕτως τὸ ἀπὸ ΑΣ πρὸς τὸ ἀπὸ ΣΠ, ἐναλλὰξ ἄρα ἔσται ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΑΣΓ, τὸ ἀπὸ ΠΣ πρὸς τὸ ἀπὸ ΣΞ. Ὡς δὲ τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΑΣΓ, τὸ ἀπὸ ΣΠ πρὸς τὸ ὑπὸ ΣΠ, ΠΜ· ἴσον ἄρα τὸ ὑπὸ ΜΠ, ΠΣ τῷ ἀπὸ ΞΣ. Κοινὸν προσκείσθω τὸ ἀπὸ ΠΣ· τὸ ἄρα ὑπὸ ΜΣ, ΣΠ τοῖς ἀπὸ ΠΣ, ΣΞ ἴσον. Ὡς ἄρα ἡ ΘΑ πρὸς ΑΣ, τὸ ἀπὸ ΜΣ πρὸς τὰ ἀπὸ ΠΣ, ΣΞ. Ὡς δὲ τὸ ἀπὸ ΜΣ πρὸς τὰ ἀπὸ ΣΞ, ΣΠ, οὕτως ὁ ἐν τῷ κυλίνδρῳ κύκλος, οὗ διάμετρος ἡ ΜΝ, πρὸς ἀμφοτέρους τοὺς κύκλους, ὧν διάμετροι αἱ ΞΟ, ΠΡ ὥστε ἰσορροπήσει περὶ τὸ Α σημεῖον ὁ κύκλος, οὗ διάμετρος ἡ ΜΝ, αὐτοῦ μένων ἀμφοτέροις τοῖς κύκλοις, ὧν διάμετροι αἱ ΞΟ, ΠΡ, μετενεχθεῖσι καὶ τεθεῖσιν τοῦ ζυγοῦ κατὰ τὸ Θ, ὥστε ἑκατέρου αὐτῶν κέντρον εἶναι τοῦ βάρους τὸ Θ. Συναμφοτέρων δὲ τῶν κύκλων, ὧν εἰσι διάμετροι αἱ ΞΟ, ΠΡ, μετενηνεγμένων κέντρον τοῦ βάρους τὸ Θ καὶ ὡς ἄρα ἡ ΘΑ πρὸς ΑΣ, οὕτως ὁ κύκλος, οὗ διάμετρος ἡ ΜΝ, πρὸς ἀμφοτέρους τοὺς κύκλους, ὧν διάμετροι αἱ ΞΟ, ΠΡ. Ὁμοίως δὲ δειχθήσεται, καὶ ἐὰν ἄλλη τις ἀχθῇ ἐν τῷ ΛΖ παραλληλογράμμῳ παρὰ τὴν ΕΖ, καὶ ἀπὸ τῆς ἀχθείσης ἐπίπεδον ἀνασταθῇ ὀρθὸν πρὸς τὴν ΑΓ, ὅτι ὁ γενόμενος κύκλος ἐν τῷ κυλίνδρῳ ἰσορροπήσει περὶ τὸ Α σημεῖον αὐτοῦ μένων συναμφοτέροις τοῖς κύκλοις τῷ τε ἐν τῷ σφαιροειδεῖ γινομένῳ καὶ τῷ ἐν τῷ κώνῳ μετενεχθεῖσιν τοῦ ζυγοῦ κατὰ τὸ Θ οὕτως, ὥστε ἑκατέρου αὐτῶν κέντρον εἶναι τοῦ βάρους τὸ Θ. Συμπληρωθέντος οὖν τοῦ κυλίνδρου ὑπὸ τῶν ληφθέντων κύκλων καὶ τοῦ σφαιροειδοῦς καὶ τοῦ κώνου ἰσόρροπος ὁ κύλινδρος ἔσται περὶ τὸ Α σημεῖον αὐτοῦ μένων τῷ τε σφαιροειδεῖ καὶ τῷ κώνῳ μετενεχθεῖσι καὶ τεθεῖσιν ἐπὶ τοῦ ζυγοῦ κατὰ τὸ Θ οὕτως, ὥστε ἑκατέρου αὐτῶν κέντρον εἶναι τοῦ βάρους τὸ Θ. Καί ἐστι τοῦ μὲν κυλίνδρου κέντρον τοῦ βάρους τὸ Κ, τοῦ δὲ σφαιροειδοῦς καὶ τοῦ κώνου συναμφοτέρων, ὡς ἐρρέθη, κέντρον τοῦ βάρους τὸ Θ· ἔστιν οὖν ὡς ἡ ΘΑ πρὸς ΑΚ, ὁ κύλινδρος πρὸς ἀμφότερα τό τε σφαιρο ειδὲς καὶ τὸν κῶνον . △ ιπλα σία δὲ ἡ ΑΘ τῆς ΑΚ· διπλάσιος ἄρα καὶ ὁ κύλινδρος ἀμφοτέρων τοῦ τε σφαιροειδοῦς καὶ τοῦ κώνου· εἷς ἄρα κύλινδρος ἴσος δυσὶν κώνοις καὶ δυσὶ σφαιροειδέσιν, Εἷς δὲ κύλινδρος ἴσος ἐστὶ τρισὶ κώνοις τοῖς αὐτοῖς· τρεῖς ἄρα κῶνοι ἴσοι εἰσὶ δυσὶ κώνοις καὶ δυσὶ σφαιροειδέσι. Κοινοὶ ἀφῃρήσθωσαν δύο κῶνοι· λοιπὸς ἄρα εἶς κῶνος, οὗ ἐστι τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΕΖ, ἴσος ἐστὶ δυσὶ σφαιροειδέσιν. Εἷς δὲ κῶνος ὁ αὐτὸς ἴσος ἐστὶν ὀκτὼ κώνοις, ὧν ἐστι τὸ διὰ τοῦ ἄξονος τρίγωνον τὸ ΑΒ△ ὀκτὼ ἄρα κῶνοι οἱ εἰρημένοι ἴσοι εἰσὶ δυσὶ σφαιροειδέσιν· καὶ τέσσαρες ἄρα κῶνοι ἴσοι ἑνὶ σφαιροειδεῖ· τετραπλάσιον ἄρα ἐστὶ τὸ σφαιροειδὲς τοῦ κώνου, οὗ κορυφὴ μέν ἐστι τὸ Α σημεῖον, βάσις δὲ ὁ περὶ διάμετρον τὴν Β△ κύκλος ὀρθὸς ὢν πρὸς τὴν ΑΓ, καὶ τὸ ἥμισυ τοῦ σφαιροειδοῦς διπλάσιόν ἐστι τοῦ εἰρημένου κώνου. Ἤχθωσαν δὲ διὰ τῶν Β, △ σημείων ἐν τῷ ΛΖ παραλληλογράμμῳ τῇ ΑΓ παράλληλοι αἱ ΦΧ, ΨΩ, καὶ νοείσθω κύλινδρος, οὗ βάσεις μὲν οἱ περὶ διαμέτρους τὰς ΦΨ, ΧΩ κύκλοι. ἄξων δὲ ἡ ΑΓ εὐθεῖα. Ἐπεὶ οὖν διπλάσιός ἐστιν ὁ κύλινδρος, οὗ ἐστι τὸ διὰ τοῦ ἄξονος παραλληλόγραμμον τὸ ΦΩ, τοῦ κυλίνδρου, οὗ τὸ διὰ τοῦ ἄξονος παραλληλόγραμμον τὸ Φ△, διὰ τὸ ἴσας αὐτῶν εἶναι τὰς βάσεις, τὸν δὲ ἄξονα τοῦ ἄξονος διπλάσιον, αὐτὸς δὲ ὁ κύλινδρος, οὗ τὸ διὰ τοῦ ἄξονος παραλληλόγραμμον τὸ Φ△, τριπλασίων ἐστὶ τοῦ κώνου, οὗ κορυφὴ μὲν τὸ Α σημεῖον, βάσις δὲ ὁ περὶ διάμετρον τὴν Β△ κύκλος ὀρθὸς ὧν πρὸς τὴν ΑΓ, ἑξαπλάσιος ἄρα ὁ κύλινδρος, οὗ ἐστι τὸ διὰ τοῦ ἄξονος παραλληλόγραμμον τὸ ΦΩ, τοῦ εἰρημένου κώνου. Ἐδείχθη δὲ τοῦ αὐτοῦ κώνου τετραπλάσιον τὸ σφαιροειδές· ἡμιόλιος ἄρα ἐστὶν ὁ κύλινδρος τοῦ σφαιροειδοῦς· οι.