γ΄. Τὰ ἄνισα βάρεα ἀπὸ τῶν ἀνίσων μακέων ἰσορροπησοῦντι, καὶ τὸ μεῖζον ἀπὸ τοῦ ἐλάσσονος. Ἔστω ἄνισα βάρεα τὰ Α, Β, καὶ ἔστω μεῖζον τὸ Α, καὶ ἰσορροπεόντων ἀπὸ τῶν ΑΓ, ΓΒ μακέων. Δεικτέον ὅτι ἐλάσσων ἐστὶν ἁ ΑΓ τᾶς ΓΒ. Μὴ γὰρ ἔστω ἐλάσσων. Ἀφαιρεθείσας δὴ τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει τὸ Α τοῦ Β, ἐπειδὴ ἰσορροπεόντων ἀπὸ τοῦ ἑτέρου ἀφῃρηται, ῥέψει ἐπὶ τὸ Β. Οὐ ῥέψει δὲ· εἴτε γὰρ ἴσα ἐστὶν ἁ ΓΑ τᾷ ΓΒ, ἰσορροπησοῦντι τὰ γὰρ ἴσα ἀπὸ τῶν ἴσων μακέων , εἴτε μείζων ἁ ΓΑ τᾶς ΓΒ, ῥέπει ἐπὶ τὸ Α· τὰ γὰρ ἴσα ἀπὸ τῶν ἀνίσων μακέων οὐκ ἰσορροπέοντι, ἀλλὰ ῥέπει ἐπὶ τὸ ἀπὸ τοῦ μείζονος μάκεος. Διὰ δὴ ταῦτα ἐλάσσων ἐστὶν ἁ ΑΓ τᾶς ΓΒ. Φανερὸν δὲ ὅτι καὶ τὰ ἀπὸ τῶν ἀνίσων μακέων ἰσορροπέοντα ἄνισά ἐντι, καὶ μεῖζόν ἐστι τὸ ἀπὸ τοῦ ἐλάσσονος.