Ἀρχιμήδης Δοσιθέῳ εὖ πράττειν. Ἀποστέλλω τοι γράψας ἐν τῷδε τῷ βιβλίῳ τῶν τε λοιπῶν θεωρημάτων τὰς ἀποδείξιας, ὧν οὐκ εἶχες ἐν τοῖς πρότερον ἀπεσταλμένοις, καὶ ἄλλων ὕστερον ποτεξευρημένων, ἃ πρότερον μὲν ἤδη πολλάκις ἐγχειρήσας ἐπισκέπτεσθαι δύσκολον ἔχειν τι φανείσας μοι τᾶς εὑρέσιος αὐτῶν ἀπόρησα· διόπερ οὐδὲ συνεξεδόθεν τοῖς ἄλλοις αὐτὰ τὰ προβεβλημένα. Ὕστερον δὲ ἐπιμελέστερον ποτʼ αὐτοῖς γενόμενος ἐξεῦρον τὰ ἀπορηθέντα. Ἦν δὲ τὰ μὲν λοιπὰ τῶν προτέρων θεωρημάτων περὶ τοῦ ὀρθογωνίου κωνοειδέος προβεβλημένα, τὰ δὲ νῦν ἐντι ποτεξευρημένα περί τε ἀμβλυγωνίου κωνοειδέος καὶ περὶ σφαιροειδέων σχημάτων, ὧν τὰ μὲν παραμάκεα, τὰ δὲ ἐπιπλατέα καλέω. Περὶ μὲν οὖν τοῦ ὀρθογωνίου κωνοειδέος ὑπέκειτο τάδε· εἴ κα ὀρθογωνίου κώνου τομὰ μενούσας τᾶς διαμέτρου περιενεχθεῖσα ἀποκατασταθῇ πάλιν, ὅθεν ὥρμασεν, τὸ περιλαφθὲν σχῆμα ὑπὸ τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς ὀρθογώνιον κωνοειδὲς καλεῖσθαι, καὶ ἄξονα μὲν αὐτοῦ τὰν μεμενάκουσαν διάμετρον καλεῖσθαι, κορυφὰν δὲ τὸ σαμεῖον, καθʼ ὃ ἅπτεται ὁ ἄξων τᾶς τοῦ κωνοειδέος ἐπιφανείας· καὶ εἴ κα τοῦ ὀρθογωνίου κωνοειδέος σχήματος ἐπίπεδον ἐπιψαύῃ, παρὰ δὲ τὸ ἐπιψαῦον ἐπίπεδον ἄλλο ἐπίπεδον ἀχθὲν ἀποτέμῃ τι τμᾶμα τοῦ κωνοειδέος, βάσιν μὲν καλεῖσθαι τοῦ ἀποτμαθέντος τμάματος τὸ ἐπίπεδον τὸ περιλαφθὲν ὑπὸ τᾶς τοῦ κωνοειδέος τομᾶς ἐν τῷ ἀποτέμνοντι ἐπιπέδῳ, κορυφὰν δὲ τὸ σαμεῖον, καθʼ ὃ ἐπιψαύει τὸ ἕτερον ἐπίπεδον τοῦ κωνοειδέος, ἄξονα δὲ τὰν ἐναπολαφθεῖσαν εὐθεῖαν ἐν τῷ τμάματι ἀπὸ τᾶς ἀχθείσας διὰ τᾶς κορυφᾶς τοῦ τμάματος παρὰ τὸν ἄξονα τοῦ κωνοειδέος. Προεβάλλετο δὲ τάδε θεωρῆσαι· διὰ τί, εἴ κα τοῦ ὀρθογωνίου κωνοειδέος τμάματα ἀποτμαθῇ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, τὸ ἀποτμαθὲν τμᾶμα ἡμιόλιον ἐσσεῖται τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν· καὶ διὰ τί, εἴ κα ἀπὸ τοῦ ὀρθογωνίου κωνοειδέος δύο τμάματα ἀποτμαθέωντι ἐπιπέδοις ὁπωσοῦν ἀγμένοις, τὰ ἀποτμαθέντα τμάματα διπλάσιον λόγον ἑξοῦντι ποτʼ ἄλλαλα τῶν ἀξόνων. Περὶ δὲ τοῦ ἀμβλυγωνίου κωνοειδέος ὑποτιθέμεθα μὲν τάδε· εἴ κα ἐν ἐπιπέδῳ ἔωντι ἀμβλυγωνίου κώνου τομὰ καὶ ἁ διάμετρος αὐτᾶς καὶ αἱ ἔγγιστα τᾶς τοῦ ἀμβλυγωνίου κώνου τομᾶς, μενούσας δὲ τᾶς διαμέτρου περιενεχθὲν τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ εἰρημέναι γραμμαί, ἀποκατασταθῇ πάλιν, ὅθεν ὥρμασεν, αἱ μὲν ἔγγιστα εὐθεῖαι τᾶς τοῦ ἀμβλυγωνίου κώνου τομᾶς δῆλον ὡς κῶνον ἰσοσκελέα περιλαψοῦνται, οὗ κορυφὰ ἐσσεῖται τὸ σαμεῖον, καθʼ ὃ αἱ ἔγγιστα συμπίπτοντι, ἄξων δὲ ἁ μεμενάκουσα διάμετρος· τὸ δὲ ὑπὸ τᾶς τοῦ ἀμβλυγωνίου κώνου τομᾶς σχῆμα περιλαφθὲν ἀμβλυγώνιον κωνοειδὲς καλεῖσθαι, ἄξονα δὲ αὐτοῦ τὰν μεμενάκουσαν διάμετρον, κορυφὰν δὲ τὸ σαμεῖον, καθʼ ὃ ἅπτεται ὁ ἄξων τᾶς ἐπιφανείας τοῦ κωνοειδέος τὸν δὲ κῶνον τὸν περιλαφθέντα ὑπὸ τᾶν ἔγγιστα τᾶς τοῦ ἀμβλυγωνίου κώνου τομᾶς περιέχοντα τὸ κωνοειδὲς καλεῖσθαι, τὰν δὲ μεταξὺ εὐθεῖαν τᾶς τε κορυφᾶς τοῦ κωνοειδέος καὶ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδὲς ποτεοῦσαν τῷ ἄξονι καλεῖσθαι· καὶ εἴ κα τοῦ ἀμβλυγωνίου κωνοειδέος ἐπίπεδον ἐπιψαύῃ, παρὰ δὲ τὸ ἐπιψαῦον ἐπίπεδον ἄλλο ἐπίπεδον ἀχθὲν ἀποτέμῃ τμᾶμα τοῦ κωνοειδέος, βάσιν μὲν καλεῖσθαι τοῦ ἀποτμαθέντος τμάματος τὸ ἐπίπεδον τὸ περιλαφθὲν ὑπὸ τᾶς τοῦ κωνοειδέος τομᾶς ἐν τῷ ἀποτέμνοντι ἐπιπέδῳ, κορυφὰν δὲ τὸ σαμεῖον, καθʼ ὃ ἅπτεται τὸ ἐπίπεδον τὸ ἐπιψαῦον τοῦ κωνοειδέος, ἄξονα δὲ τὰν ἀπολαφθεῖσαν ἐν τῷ τμάματι ἀπὸ τᾶς διαχθείσας διὰ τᾶς κορυφᾶς τοῦ τμάματος καὶ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, καὶ τὰν μεταξὺ τᾶν εἰρημενᾶν κορυφᾶν εὐθεῖαν ποτεοῦσαν τῷ ἄξονι καλεῖσθαι. Τὰ μὲν οὖν ὀρθογώνια κωνοειδέα πάντα ὁμοῖά ἐντι, τῶν δὲ ἀμβλυγωνίων κωνοειδέων ὁμοῖα καλείσθω, ὧν κα οἱ κῶνοι οἱ περιέχοντες τὰ κωνοειδέα ὁμοῖοι ἔωντι. Προβάλλεται δὲ τάδε θεωρῆσαι· διὰ τί, εἴ κα τοῦ ἀμβλυγωνίου κωνοειδέος ἀποτμαθῇ τμάματα ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, τὸ ἀποτμαθὲν τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ τριπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι ποτὶ τὰν ἴσαν ἀμφοτέραις τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ διπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι· καὶ διὰ τί, εἴ κα τοῦ ἀμβλυγωνίου κωνοειδέος τμᾶμα ἀποτμαθῇ ἐπιπέδῳ μὴ ὀρθῷ ποτὶ τὸν ἄξονα, τὸ ἀποτμαθὲν τμᾶμα ποτὶ τὸ σχῆμα τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, ὃ γίγνεται ἀπότμαμα κώνου, τοῦτον ἕξει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ τριπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι ποτὶ τὰν ἴσαν ἀμφοτέραις τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ διπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι. Περὶ δὲ τῶν σφαιροειδέων σχημάτων ὑποτιθέμεθα τάδε· εἴ κα ὀξυγωνίου κώνου τομὰ μενούσας τᾶς μείζονος διαμέτρου περιενεχθεῖσα ἀποκατασταθῇ πάλιν, ὅθεν ὥρμασεν, τὸ περιλαφθὲν σχῆμα ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς παραμᾶκες σφαιροειδὲς καλεῖσθαι· εἰ δέ κα τᾶς ἐλάσσονος διαμέτρου μενούσας περιενεχθεῖσα ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἀποκατασταθῇ πάλιν, ὅθεν ὥρμασεν, τὸ περιλαφθὲν σχῆμα ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἐπιπλατὺ σφαιροειδὲς καλεῖσθαι· ἑκατέρου δὲ τῶν σφαιροειδέων ἄξονα μὲν καλεῖσθαι τὰν μεμενάκουσαν διάμετρον, κορυφὰν δὲ τὸ σαμεῖον, καθʼ ὃ ἅπτεται ὁ ἄξων τᾶς ἐπιφανείας τοῦ σφαιροειδέος, κέντρον δὲ καλεῖσθαι τὸ μέσον τοῦ ἄξονος καὶ διάμετρον τὰν διὰ τοῦ κέντρου ποτʼ ὀρθὰς ἀγομέναν τῷ ἄξονι· καὶ εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερουοῦν ἐπίπεδα παράλληλα ἐπιψαύωντι μὴ τέμνοντα, παρὰ δὲ τὰ ἐπίπεδα τὰ ψαύοντα ἄλλο ἐπίπεδον ἀχθῇ τέμνον τὸ σφαιροειδές, τῶν γενομένων τμαμάτων βάσιν μὲν καλεῖσθαι τὸ περιλαφθὲν ὑπὸ τᾶς τοῦ σφαιροειδέος τομᾶς ἐν τῷ τέμνοντι ἐπιπέδῳ, κορυφὰς δὲ τὰ σημεῖα, καθʼ ἃ ἐπιψαύοντι τοῦ σφαιροειδέος τὰ παράλληλα ἐπίπεδα, ἄξονας δὲ τὰς ἐναπολαφθείσας εὐθείας ἐν τοῖς τμαμάτεσσιν ἀπὸ τᾶς εὐθείας τᾶς τὰς κορυφὰς αὐτῶν ἐπιζευγνυούσας· ὅτι δὲ τά τε ἐπιψαύοντα ἐπίπεδα τοῦ σφαιροειδέος καθʼ ἓν μόνον ἅπτονται σαμεῖον τᾶς ἐπιφανείας αὐτοῦ, καὶ ὅτι ἁ τὰς ἁφὰς ἐπιζευγνύουσα εὐθεῖα διὰ τοῦ κέντρου τοῦ σφαιροειδέος πορεύεται, δειξοῦμες· ὁμοῖα δε καλεῖσθαι τῶν σφαιροειδέων σχημάτων, ὧν κα οἱ ἄξονες ποτὶ τὰς διαμέτρους τὸν αὐτὸν λόγον ἔχωντι. Τμάματα δὲ σφαιροειδέων σχημάτων καὶ κωνοειδέων ὁμοῖα καλείσθω, εἴ κα ἀφʼ ὁμοίων σχημάτων ἀφαιρημένα ἔωντι καὶ τάς τε βάσεις ὁμοίας ἔχωντι, καὶ οἱ ἄξονες αὐτῶν ἤτοι ὀρθοὶ ἐόντες ποτὶ τὰ ἐπίπεδα τῶν βάσιων ἢ γωνίας ἴσας ποιοῦντες ποτὶ τὰς ὁμολόγους διαμέτρους τῶν βάσιων τὸν αὐτὸν ἔχωντι λόγον ποτʼ ἀλλάλους ταῖς ὁμολόγοις διαμέτροις τῶν βάσιων. Προβάλλεται δὲ περὶ τῶν σφαιροειδέων τάδε θεωρῆσαι· διὰ τί, εἴ κά τι τῶν σφαιροειδέων σχημάτων ἐπιπέδῳ τμαθῇ διὰ τοῦ κέντρου ὀρθῷ ποτὶ τὸν ἄξονα, τῶν γεναμένων τμαμάτων ἑκάτερον διπλάσιον ἐσσεῖται τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, εἰ δὲ κα ὀρθῷ μὲν ποτὶ τὸν ἄξονα τῷ ἐπιπέδῳ τμαθῇ, μὴ διὰ τοῦ κέντρου δὲ, τῶν γεναμένων τμαμάτων τὸ μὲν μεῖζον ποτὶ τὸν κῶνον τὸν τὰν αὐτὰν βάσιν ἔχοντα τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τᾷ τε ἡμισείᾳ τᾶς εὐθείας, ἅ ἐστιν ἄξων τοῦ σφαιροειδέος, καὶ τῷ ἄξονι τῷ τοῦ ἐλάσσονος τμάματος ποτὶ τὸν ἄξονα τοῦ ἐλάσσονος τμάματος, τὸ δὲ ἔλασσον τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τᾷ τε ἡμισείᾳ τᾶς εὐθείας, ἅ ἐστιν ἄξων τοῦ σφαιροειδέος, καὶ τῷ ἄξονι τῷ τοῦ μείζονος τμάματος ποτὶ τὸν ἄξονα τοῦ μείζονος τμάματος· καὶ διὰ τί, εἴ κα τῶν σφαιροειδέων τι ἐπιπέδῳ τμαθῇ διὰ τοῦ κέντρου μὴ ὀρθῷ ποτὶ τὸν ἄξονα, τῶν γεναμένων τμαμάτων ἑκάτερον διπλάσιον ἐσσεῖται τοῦ σχήματος τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν· γίγνεται δὲ τὸ σχῆμα ἀπότμαμα κώνου· εἰ δέ κα μήτε διὰ τοῦ κέντρου μήτε ὀρθῷ ποτὶ τὸν ἄξονα τῷ ἐπιπέδῳ τμαθῇ τὸ σφαιροειδές, τῶν γεναμένων τμαμάτων τὸ μὲν μεῖζον ποτὶ τὸ σχῆμα τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τᾷ τε ἡμισέᾳ αὐτᾶς τᾶς ἐπιζευγνυούσας τὰς κορυφὰς τῶν τμαμάτων καὶ τῷ ἄξονι τῷ τοῦ ἐλάσσονος τμάματος ποτὶ τὸν ἄξονα τὸν τοῦ ἐλάσσονος τμάματος, τὸ δὲ ἔλασσον τμᾶμα ποτὶ τὸ σχῆμα τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἔχει ἁ συναμφοτέραις ἴσα τᾷ τε ἡμισέᾳ τᾶς ἐπιζευγνυούσας τὰς κορυφὰς τῶν τμαμάτων καὶ τῷ ἄξονι τοῦ μείζονος τμάματος ποτὶ τὸν ἄξονα τὸν τοῦ μείζονος τμάματος· γίνεται δὲ καὶ ἐν τούτοις τὸ σχῆμα ἀπότμαμα κώνου. Ἀποδειχθέντων δὲ τῶν εἰρημένων θεωρημάτων διὰ τούτων εὑρίσκονται θεωρήματά τε πολλὰ καὶ προβλήματα, οἷον καὶ τόδε· ὅτι τὰ ὁμοῖα σφαιροειδέα καὶ τὰ ὁμοῖα τμάματα τῶν τε σφαιροειδέων σχημάτων καὶ τῶν κωνοειδέων τριπλασίονα λόγον ἔχοντι ποτʼ ἄλλαλα τῶν ἀξόνων, καὶ διότι τῶν ἴσων σφαιροειδέων σχημάτων τὰ τετράγωνα τὰ ἀπὸ τῶν διαμέτρων ἀντιπεπόνθασι τοῖς ἀξόνεσσιν, καὶ εἴ κα τῶν σφαιροειδέων σχημάτων τὰ τετράγωνα τὰ ἀπὸ τῶν διαμέτρων ἀντιπεπόνθωντι τοῖς ἀξόνεσσιν, ἴσα ἐντὶ τὰ σφαιροειδέα· πρόβλημα δὲ οἷον καὶ τόδε· ἀπὸ τοῦ δοθέντος σφαιροειδέος σχήματος ἢ κωνοειδέος τμᾶμα ἀποτεμεῖν ἐπιπέδῳ παρὰ δοθὲν ἐπίπεδον ἀγμένῳ, εἶμεν δὲ τὸ ἀποτμαθὲν τμᾶμα ἴσον τῷ δοθέντι κώνῳ ἢ κυλίνδρῳ ἢ σφαίρᾳ τᾷ δοθείσᾳ. Προγράψαντες οὖν τά τε θεωρήματα καὶ τὰ ἐπιτάγματα τὰ χρεῖαν ἔχοντα εἰς τὰς ἀποδείξιας αὐτῶν μετὰ ταῦτα γραψοῦμές τοι τὰ προκείμενα. Εὐτύχει. ΟΡΟΙ Εἴ κα κῶνος ἐπιπέδῳ τμαθῇ συμπίπτοντι πάσαις ταῖς τοῦ κώνου πλευραῖς, ἁ τομὰ ἐσσεῖται ἤτοι κύκλος ἢ ὀξυγωνίου κώνου τομά. Εἰ μὲν οὖν κύκλος ἁ τομά, δῆλον ὅτι τὸ ἀπολαφθὲν ἀπʼ αὐτοῦ τμᾶμα ἐπὶ τὰ αὐτὰ τᾷ τοῦ κώνου κορυφᾷ κῶνος ἐσσεῖται· εἰ δὲ κα ἁ τομὰ γένηται ὀξυγωνίου κώνου τομά, τὸ ἀπολαφθὲν ἀπὸ τοῦ κώνου σχῆμα ἐπὶ τὰ αὐτὰ τᾷ τοῦ κώνου κορυφᾷ ἀπότμαμα κώνου καλείσθω, τοῦ δὲ ἀποτμάματος βάσις μὲν καλείσθω τὸ ἐπίπεδον τὸ περιλαφθὲν ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς, κορυφὰ δὲ τὸ σαμεῖον, ὃ καὶ τοῦ κώνου κορυφά, ἄξων δὲ ἁ ἀπὸ τᾶς κορυφᾶς τοῦ κώνου ἐπὶ τὸ κέντρον τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἐπιζευχθεῖσα εὐθεῖα. Καὶ εἴ κα κύλινδρος δυοῖς ἐπιπέδοις παραλλήλοις τμαθῇ συμπιπτόντεσσι πάσαις ταῖς τοῦ κυλίνδρου πλευραῖς, αἱ τομαὶ ἐσσοῦνται ἤτοι κύκλοι ἢ ὀξυγωνίων κώνων τομαὶ ἴσαι καὶ ὁμοῖαι ἀλλάλαις. Εἰ μὲν οὖν κα αἱ τομαὶ κύκλοι γένωνται, δῆλον ὅτι τὸ ἀποτμαθὲν ἀπὸ τοῦ κυλινδρου σχῆμα μεταξὺ τῶν παραλλήλων ἐπιπέδων κύλινδρος ἐσσεῖται· εἰ δέ κα αἱ τομαὶ γένωνται ὀξυγωνίων κώνων τομαί, τὸ ἀπολαφθὲν ἀπὸ τοῦ κυλίνδρου σχῆμα μεταξὺ τῶν παραλλήλων ἐπιπέδων τόμος κυλίνδρου καλείσθω, τοῦ δὲ τόμου βάσις μὲν καλείσθω τὰ ἐπίπεδα τὰ περιλαφθέντα ὑπὸ τᾶν τῶν ὀξυγωνίων κώνων τομᾶν, ἄξων δὲ ἁ ἐπιζευγνύουσα εὐθεῖα τὰ κέντρα τᾶν τῶν ὀξυγωνίων κώνων τομᾶν· ἐσσεῖται δὲ αὕτα ἐπὶ τᾶς αὐτᾶς εὐθείας τῷ ἄξονι τοῦ κυλίνδρου. ΛΗΜΜΑ Εἴ κα ἔωντι μεγέθεα ὁποσαοῦν τῷ ἴσῳ ἀλλάλων ὑπερέχοντα, ᾗ δὲ ἁ ὑπεροχὰ ἴσα τῷ ἐλαχίστῳ, καὶ ἄλλα μεγέθεα τῷ μὲν πλήθει ἴσα τούτοις, τῷ δὲ μεγέθει ἕκαστον ἴσον τῷ μεγίστῳ, πάντα τὰ μεγέθεα, ὧν ἐστιν ἕκαστον ἴσον τῷ μεγίστῳ, πάντων μὲν τῶν τῷ ἴσῳ ὑπερεχόντων ἐλάσσονα ἐσσοῦνται ἢ διπλάσια, τῶν δὲ λοιπῶν χωρὶς τοῦ μεγίστου μείζονα ἢ διπλάσια. Ἁ δὲ ἀπόδειξις τούτου φανερά. α΄. Εἴ κα μεγέθεα ὁποσαοῦν τῷ πλήθει ἄλλοις μεγέθεσιν ἴσοις τῷ πλήθει κατὰ δύο τὸν αὐτὸν λόγον ἔχωντι τὰ ὁμοίως τεταγμένα, λέγηται δὲ τά τε πρῶτα μεγέθεα ποτʼ ἄλλα μεγέθεα ἢ πάντα ἤ τινα αὐτῶν ἐν λόγοις ὁποιοισοῦν, καὶ τὰ ὕστερον ποτʼ ἄλλα μεγέθεα τὰ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις, πάντα τὰ πρῶτα μεγέθεα ποτὶ πάντα, ἃ λέγονται, τὸν αὐτὸν ἑξοῦντι λόγον, ὃν ἔχοντι πάντα τὰ ὕστερον μεγέθεα ποτὶ πάντα, ἃ λέγονται. Ἔστω τινὰ μεγέθεα τὰ Α, Β, Γ, △, Ε, Ζ ἄλλοις μεγέθεσιν ἴσοις τῷ πλήθει τοῖς Η, Θ, Ι, Κ, Λ, Μ κατὰ δύο τὸν αὐτὸν ἔχοντα λόγον, καὶ ἐχέτω τὸ μὲν Α ποτὶ τὸ Β τὸν αὐτὸν λόγον, ὃν τὸ Η ποτὶ τὸ Θ, τὸ δὲ Β ποτὶ τὸ Γ, ὃν τὸ Θ ποτὶ τὸ Ι, καὶ τὰ ἄλλα ὁμοίως τούτοις, λεγέσθω δὲ τὰ μὲν Α, Β, Γ, △, Ε, Ζ μεγέθεα ποτʼ ἄλλα μεγέθεα τὰ Ν, Ξ, Ο, Π, Ρ, Σ ἐν λόγοις ὁποιοισοῦν, τὰ δὲ Η, Θ, Ι, Κ, Λ, Μ ποτʼ ἄλλα τὰ Τ, Υ, Φ, Χ, Ψ, Ω τὰ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις, καὶ ὃν μὲν ἔχει λόγον τὸ Α ποτὶ τὸ Ν, τὸ Η ἐχέτω ποτὶ τὸ Τ, ὃν δὲ λόγον ἔχει τὸ Β ποτὶ τὸ Ξ, τὸ Θ ἐχέτω ποτὶ τὸ Υ, καὶ τὰ ἄλλα ὁμοίως τούτοις· δεικτέον ὅτι πάντα τὰ Α, Β, Γ, △, Ε, Ζ ποτὶ πάντα τὰ Ν, Ξ, Ο, Π, Ρ, Σ τὸν αὐτὸν ἔχοντι λόγον, ὃν πάντα τὰ Η, Θ, Ι, Κ, Λ, Μ ποτὶ πάντα τὰ Τ, Υ, Φ, Χ, Ψ, Ω. Ἐπεὶ γὰρ τὸ μὲν Ν ποτὶ τὸ Α τὸν αὐτὸν ἔχει λόγον, ὃν τὸ Τ ποτὶ τὸ Η, τὸ δὲ Α ποτὶ τὸ Β, ὃν τὸ Η ποτὶ τὸ Θ, τὸ δὲ Β ποτὶ τὸ Ξ, ὃν τὸ Θ ποτὶ τὸ Υ, τὸν αὐτὸν ἕξει λόγον τὸ Ν ποτὶ τὸ Ξ, ὃν τὸ Τ ποτὶ τὸ Υ· διὰ τὰ αὐτὰ δὲ καὶ τὸ Ξ ποτὶ τὸ Ο, ὃν τὸ Υ ποτὶ τὸ Φ, καὶ τούτοις τὰ ἄλλα ὁμοίως. Ἔχοντι δὴ τὰ μὲν Α, Β, Γ, △, Ε, Ζ πάντα ποτὶ τὸ Α τὸν αὐτὸν λόγον, ὃν ἔχοντι τὰ Η, Θ, Ι, Κ, Λ, Μ πάντα ποτὶ τὸ Η, τὸ δὲ Α ποτὶ τὸ Ν, ὃν τὸ Η ποτὶ τὸ Τ, τὸ δὲ Ν ποτὶ πάντα τὰ Ν, Ξ, Ο, Π, Ρ, Σ τὸν αὐτὸν λόγον, ὃν τὸ Τ ποτὶ πάντα τὰ Τ, Υ, Φ, Χ, Ψ, Ω· δῆλον οὖν, ὅτι πάντα τὰ Α, Β, Γ, △, Ε, Ζ ποτὶ πάντα τὰ Ν, Ξ, Ο, Π, Ρ, Σ τὸν αὐτὸν ἔχοντι λόγον, ὃν πάντα τὰ Η, Θ, Ι, Κ, Λ, Μ ποτὶ πάντα τὰ Τ, Υ, Φ, Χ, Ψ, Ω. Φανερὸν δὲ ὅτι καὶ εἴ κα τῶν τε Α, Β, Γ, △, Ε, Ζ μεγεθέων τὰ μὲν Α, Β, Γ, △, Ε λέγωνται ποτὶ τὰ Ν, Ξ, Ο, Π, Ρ, τὸ δὲ Ζ μηδὲ ποθ᾿  ἓν λέγηται, καὶ τῶν Η, Θ, Ι, Κ, Λ, Μ τὰ μὲν Η, Θ, Ι, Κ, Λ λέγωνται ποτὶ τὰ Τ, Υ, Φ, Χ, Ψ, τὰ ὁμοῖα ἐν τοῖς αὐτοῖς λόγοις, τὸ δὲ Μ μηδὲ ποθʼ ἓν λέγηται, ὁμοίως πάντα τὰ Α, Β, Γ, △, Ε, Ζ ποτὶ πάντα τὰ Ν, Ξ, Ο, Π, Ρ τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πάντα τὰ Η, Θ, Ι, Κ, Λ, Μ ποτὶ πάντα τὰ Τ, Υ, Φ, Χ, Ψ. β΄. Εἴ κα γραμμαὶ ἴσαι ἀλλάλαις ἔωντι ὁποσαιοῦν τῷ πλήθει, καὶ παῤ ἑκάσταν αὐτᾶν παραπέσῃ τι χωρίον ὑπερβάλλον εἴδει τετραγώνῳ, ἔωντι δὲ αἱ πλευραὶ τῶν ὑπερβλημάτων τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι καὶ ἁ ὑπεροχὰ ἴσα τᾷ ἐλαχίστᾳ, ἔωντι δὲ καὶ ἄλλα χωρία τῷ μὲν πλήθει ἴσα τούτοις, τῷ δὲ μεγέθει ἕκαστον ἴσον τῷ μεγίστῳ, ποτὶ μὲν πάντα τὰ ἕτερα χωρία ἐλάσσονα λόγον ἑξοῦντι τοῦ ὃν ἔχει ἁ ἴσα συναμφοτέραις τᾷ τε τοῦ μεγίστου ὑπερβλήματος πλευρᾷ καὶ μιᾷ τᾶν ἰσᾶν ἐουσᾶν ποτὶ τὰν ἴσαν συναμφοτέραις τῷ τε τρίτῳ μέρει τᾶς τοῦ μεγίστου ὑπερβλήματος πλευρᾶς καὶ τᾷ ἡμισέᾳ μιᾶς τᾶν ἰσᾶν ἐουσᾶν, ποτὶ δὲ τὰ λοιπὰ χωρία ἄνευ τοῦ μεγίστου μείζονα λόγον ἑξοῦντι τοῦ αὐτοῦ λόγου. Ἔστωσαν γὰρ ἴσαι εὐθεῖαι ὁποσαιοῦν τῷ πλήθει, ἐφʼ ἆν τὰ Α, καὶ παραπεπτωκέτω παῤ ἑκάσταν αὐτᾶν χωρίον ὑπερβάλλον εἴδει τετραγώνῳ, ἔστων δὲ τῶν ὑπερβλημάτων πλευραὶ αἱ Β, Γ, △, Ε, Ζ, Η τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι, καὶ ἁ ὑπεροχὰ ἔστω ἴσα τᾷ ἐλαχίστᾳ, καὶ μεγίστα μὲν ἔστω ἁ Β, ἐλαχίστα δὲ ἁ Η· ἔστω δὲ καὶ ἄλλα χωρία, ἐφʼ ὧν ἕκαστον τῶν Θ, Ι, Κ, Λ, τῷ μὲν πλήθει ἴσα τούτοις, τῷ δὲ μεγέθει ἕκαστον ἴσον ἔστω τῷ μεγίστῳ τῷ παρὰ τὰν ΑΒ παρακειμένῳ, ἔστω δὲ ἁ μὲν ΘΙ γραμμὰ ἴσα τᾷ Α, ἁ δὲ ΚΛ ἴσα τᾷ Β, καὶ τᾶν μὲν ΘΙ γραμμᾶν ἑκάστα ἔστω διπλασία τᾶς Ι, τᾶν δὲ ΚΛ ἑκάστα τριπλασία τᾶς Κ· δεικτέον ὅτι τὰ χωρία πάντα, ἐν οἷς τὰ Θ, Ι, Κ, Λ, ποτὶ μὲν πάντα τὰ ἕτερα χωρία τὰ ΑΒ, ΑΓ, Α△, ΑΕ, ΑΖ, ΑΗ ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει ἁ ΘΙΚΛ εὐθεῖα ποτὶ τὰν ΙΚ, ποτὶ δὲ τὰ λοιπὰ ἄνευ τοῦ μεγίστου τοῦ ΑΒ μείζονα λόγον ἔχοντι τοῦ αὐτοῦ λόγου. Ἔστι γάρ τινα χωρία, ἐν οἷς τὰ Α, τῷ ἴσῳ ἀλλάλων ὑπερέχοντα, καὶ ἁ ὑπεροχὰ ἴσα τῷ ἐλαχίστῳ ἐπεί τε τὰ παραβλήματα καὶ τὰ πλάτη τῷ ἴσῳ ὑπερέχουσιν , καὶ ἄλλα χωρία, ἐν οἷς τὰ Θ, Ι, τῷ μὲν πλήθει ἴσα τούτοις, τῷ δὲ μεγέθει ἕκαστον ἴσον τῷ μεγίστῳ σύμπαντα οὖν τὰ χωρία, ἐν οἷς τὰ Θ, Ι, πάντων μὲν τῶν ἐν οἷς τὰ Α ἐλάσσονά ἐντι ἢ διπλασίονα, τῶν δὲ λοιπῶν χωρὶς τοῦ μεγίστου μείζονα ἢ διπλασίονα. Αὐτὰ οὖν τὰ χωρία, ἐν οἷς τὰ Ι, πάντων μὲν τῶν ἐν οἷς τὰ Α ἐλάσσονά ἐντι, τῶν δὲ λοιπῶν ἄνευ τοῦ μεγίστου μείζονα. Πάλιν ἐντὶ γραμμαί τινες αἱ Β, Γ, △, Ε, Ζ, Η τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι, καὶ ἁ ὑπεροχὰ ἴσα τᾷ ἐλαχίστᾳ, καὶ ἄλλαι γραμμαί, ἐφʼ ἆν τὰ Κ, Λ, τῷ μὲν πλήθει ἴσαι ταύταις, τῷ δὲ μεγέθει ἑκάστα ἴσα τᾷ μεγίστᾳ· τὰ οὖν τετράγωνα τὰ ἀπὸ πασᾶν τᾶν ἰσᾶν ἀλλάλαις τε καὶ τᾷ μεγίστᾳ πάντων μὲν τῶν τετραγώνων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν ἐλάσσονά ἐντι ἢ τριηλάσια, τῶν δὲ λοιπῶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου μείζονα ἢ τριπλάσια δέδεικται γὰρ τοῦτο ἐν τοῖς περὶ τᾶν ἑλίκων ἐκδεδομένοις. Τὰ οὖν χωρία, ἐν οἷς τὸ Κ, πάντων μὲν τῶν χωρίων, ἐν οἷς τὰ Β, Γ, △, Ε, Ζ, Η, ἐλάσσονά ἐστιν, αὐτῶν δὲ τῶν ἐν οἷς τὰ Γ, △, Ε, Ζ, Η, μείζονα· ὥστε καὶ πάντα τὰ χωρία, ἐν οἷς τὰ Ι, Κ, πάντων μὲν τῶν ἐν οἷς τὰ ΑΒ, ΑΓ, Α△, ΑΕ, ΑΖ, ΑΗ, ἐλάσσονά ἐστι, τῶν δὲ ἐν οἷς τὰ ΑΓ, Α△, ΑΕ, ΑΖ, ΑΗ, μείζονα. Δῆλον οὖν ὅτι πάντα τὰ χωρία, ἐν οἷς τὰ Θ, Ι, Κ, Λ ποτὶ μὲν τὰ χωρία, ἐν οἷς τὰ ΑΒ, ΑΓ, Α△, ΑΕ, ΑΖ, ΑΗ, ἐλάσσονα λόγον ἔχοντι τοῦ ὃν ἔχει ἁ ΘΛ ποτὶ τὰν ΙΚ, ποτὶ δὲ τὰ λοιπὰ χωρὶς τοῦ ἐν ᾧ τὸ ΑΒ μείζονα τοῦ αὐτοῦ λόγου. γ΄. Εἴ κα κώνου τομᾶς ὁποιασοῦν εὐθεῖαι ἐπιψαύωντι ἀπὸ τοῦ αὐτοῦ σαμείου ἀγμέναι, ἔωντι δὲ καὶ ἄλλαι εὐθεῖαι ἐν τᾷ τοῦ κώνου τομᾷ παρὰ τὰς ἐπιψαυούσας ἀγμέναι καὶ τέμνουσαι ἀλλάλας, τὰ περιεχόμενα ὑπὸ τῶν τμαμάτων τὸν αὐτὸν ἑξοῦντι λόγον ποτʼ ἄλλαλα, ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν· ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς ἑτέρας γραμμᾶς τμαμάτων τῷ τετραγώνῳ τῷ ἀπὸ τᾶς ἐπιψαυούσας τᾶς παραλλήλου αὐτᾷ. Ἀποδέδεικται δὲ τοῦτο ἐν τοῖς κωνικοῖς στοιχείοις. Εἴ κα ἀπὸ τᾶς αὐτᾶς ὀρθογωνίου κώνου τομᾶς δύο τμάματα ἀποτμαθέωντι ὁπωσοῦν ἴσας ἔχοντα τὰς διαμέτρους, αὐτὰ δὲ τὰ τμάματα ἴσα ἐσσοῦνται καὶ τὰ τρίγωνα τὰ ἐγγραφόμενα εἰς αὐτὰ τὰν αὐτὰν βάσιν ἔχοντα τοῖς τμαμάτεσσι καὶ ὕψος τὸ αὐτό· διάμετρον δὲ καλέω παντὸς τμάματος τὰν δίχα τέμνουσαν τὰς εὐθείας πάσας τὰς παρὰ τὰν βάσιν αὐτοῦ ἀγομένας. Ἔστω ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ, καὶ ἀποτετμήσθω ἀπʼ αὐτᾶς δύο τμάματα τό τε Α△Ε καὶ τὸ ΘΒΓ, ἔστω δὲ τοῦ μὲν Α△Ε τμάματος διάμετρος ἁ △Ζ, τοῦ δὲ ΘΒΓ ἁ ΒΗ, καὶ ἔστων ἴσαι αἱ △Ζ, ΒΗ· δεικτέον ὅτι τὰ τμάματα ἴσα ἐστὶ τὰ Α△Ε, ΘΒΓ καὶ τὰ τρίγωνα τὰ ἐγγραφόμενα τὸν εἰρημένον τρόπον ἐν αὐτοῖς. Ἔστω δὴ πρῶτον ἁ ἀποτέμνουσα τὸ ἕτερον τμᾶμα ἁ ΘΓ ποτʼ ὀρθὰς τᾷ διαμέτρῳ τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς, λελάφθω δὲ παῤ ἃν δύνανται αἱ ἀπὸ τᾶς τομᾶς, ἁ διπλασία τᾶς μέχρι τοῦ ἄξονος, καὶ ἔστω ἐφʼ ᾆ τὸ Μ, ἀπὸ δὲ τοῦ Α κάθετος ἄχθω ἐπὶ τὰν △Ζ ἁ ΑΚ. Ἐπεὶ οὖν διάμετρός ἐντι ἁ △Ζ τοῦ τμάματος, ἁ δὲ ΑΕ δίχα τέμνεται κατὰ τὸ Ζ, καὶ ἁ △Ζ παρὰ τὰν διάμετρόν ἐστι τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς· οὕτω γὰρ δίχα τέμνει πάσας τὰς παρὰ τὰν ΑΕ ἀγομένας. Ὃν δὴ λόγον ἔχει τὸ τετράγωνον τὸ ἀπὸ τᾶς ΑΖ ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΑΚ, τοῦτον ἐχέτω ἁ Ν ποτὶ τὰν Μ· αἱ δὴ ἀπὸ τᾶς τομᾶς ἐπὶ τὰν △Ζ ἀγόμεναι παρὰ τὰν ΑΕ δύνανται τὰ παρὰ τὰν ἴσαν τᾷ Ν παραπίπτοντα πλάτος ἔχοντα, ἃς αὐτοὶ ἀπολαμβάνοντι ἀπὸ τᾶς △Ζ ποτὶ τὸ △ πέρας· δέδεικται γὰρ ἐν τοῖς κωνικοῖς· δύναται οὖν καὶ ἁ ΑΖ ἴσον τῷ περιεχομένῳ ὑπὸ τᾶς Ν καὶ τᾶς △Ζ. Δύναται δὲ καὶ ἁ ΘΗ ἴσον τῷ περιεχομένῳ ὑπό τε τᾶς Μ καὶ τᾶς ΒΗ, ἐπεὶ κάθετός ἐστιν ἁ ΘΗ ἐπὶ τὰν διάμετρον· ἔχοι οὖν κα τὸ τετράγωνον τὸ ἀπὸ τᾶς ΑΖ ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΘΗ τὸν αὐτὸν λόγον, ὃν ἁ Ν ποτὶ τὰν Μ, ἐπεὶ ἴσαι ὑπέκειντο αἱ △Ζ, ΒΗ. Ἔχει δὲ τὸ ἀπὸ τᾶς ΑΖ τετράγωνον καὶ ποτὶ τὸ ἀπὸ τᾶς ΑΚ τὸν αὐτὸν λόγον, ὃν ἁ Ν ποτὶ τὰν Μ· ἴσαι ἄρα ἐντὶ αἱ ΘΗ, ΑΚ. Ἐντὶ δὲ ἴσαι καὶ αἱ ΒΗ, △Ζ· ὥστε ἴσον ἐστὶ τὸ ὑπὸ τᾶν ΘΗ, ΒΗ περιεχόμενον τῷ ὑπὸ τᾶν ΑΚ, △Ζ. Ἴσον ἄρα ἐστὶν καὶ τὸ ΘΗΒ τρίγωνον τῷ △ΑΖ τριγώνῳ· ὥστε καὶ τὰ διπλάσια. Ἔστι δὲ τοῦ μὲν Α△Ε τριγώνου ἐπίτριτον τὸ Α△Ε τμᾶμα, τοῦ δὲ ΘΒΓ τριγώνου ἐπίτριτον τὸ ΘΒΓ τμᾶμα· δῆλον οὖν ὅτι τά τε τμάματά ἐστιν ἴσα καὶ τὰ τρίγωνα τὰ ἐγγραφόμενα εἰς αὐτά. Εἰ δὲ μηδετέρα τᾶν τὰ τμάματα ἀποτεμνουσᾶν ποτʼ ὀρθάς ἐντι τᾷ διαμέτρῳ τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς, ἀπολαφθείσας ἀπὸ τᾶς διαμέτρου τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς ἴσας τᾷ διαμέτρῳ τᾷ τοῦ ἑνὸς τμάματος καὶ ἀπὸ τοῦ πέρατος τᾶς ἀπολαφθείσας ποτʼ ὀρθὰς ἀχθείσας τᾷ διαμέτρῳ, τὸ γενόμενον τμᾶμα ἑκατέρῳ τῶν τμαμάτων ἴσον ἐσσεῖται. Δῆλον οὖν ἐστι τὸ προτεθέν. δ΄. Πᾶν χωρίον τὸ περιεχόμενον ὑπὸ ὀξυγωνίου κώνου τομᾶς ποτὶ τὸν κύκλον τὸν ἔχοντα τὰν διάμετρον ἴσαν τᾷ μείζονι διαμέτρῳ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ἐλάσσων διάμετρος αὐτᾶς ποτὶ τὰν μείζω ἢ ποτὶ τὰν τοῦ κύκλου διάμετρον. Ἔστω γὰρ ὀξυγωνίου κώνου τομά, ἐφʼ ἇς τὰ Α, Β, Γ, △, διάμετρος δὲ αὐτᾶς ἁ μὲν μείζων ἔστω, ἐφʼ ἇς τὰ Α, Γ, ἁ δὲ ἐλάσσων, ἐφʼ ἇς τὰ Β, △, ἔστω δὲ κύκλος περὶ διάμετρον τὰν ΑΓ· δεικτέον ὅτι τὸ περιεχόμενον χωρίον ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ποτὶ τὸν κύκλον τὸν αὐτὸν ἔχει λόγον, ὃν ἁ Β△ ποτὶ τὰν ΓΑ, τουτέστι τὰν ΕΖ. Ὃν δὴ λόγον ἔχει ἁ Β△ ποτὶ τὰν ΕΖ, τοῦτον ἐχέτω ὁ κύκλος, ἐν ᾧ τὸ Ψ, ποτὶ τὸν ΑΕΓΖ κύκλον· λέγω ὅτι ἴσος ἐστὶν ὁ Ψ κύκλος τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ. Εἰ γὰρ μή ἐστιν ἴσος ὁ Ψ κύκλος τῷ περιεχομένῳ χωρίῳ ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς, ἔστω πρῶτον, εἰ δυνατόν, μείζων. Δυνατὸν δή ἐστιν εἰς τὸν Ψ κύκλον πολύγωνον ἐγγράψαι ἀρτιόγωνον μεῖζον τοῦ ΑΒΓ△ χωρίου. Νοείσθω δὴ ἐγγεγραμμένον, ἐγγεγράφθω δὲ καὶ εἰς τὸν ΑΕΓΖ κύκλον εὐθύγραμμον ὁμοῖον τῷ ἐν τῷ Ψ κύκλῳ ἐγγεγραμμένῳ, καὶ ἀπὸ τᾶν γωνιᾶν αὐτοῦ κάθετοι ἄχθωσαν ἐπὶ τὰν ΑΓ διάμετρον, ἐπὶ δὲ τὰ σαμεῖαι καθʼ ἃ τέμνοντι αἱ κάθετοι τὰν τοῦ ὀξυγωνίου κώνου τομάν, εὐθεῖαι ἐπεζεύχθωσαν· ἐσσεῖται δή τι ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ ἐγγεγραμμένον εὐθύγραμμον, καὶ ἕξει αὐτὸ ποτὶ τὸ εὐθύγραμμον τὸ ἐν τῷ ΑΕΓΖ κύκλῳ ἐγγεγραμμένον τὸν αὐτὸν λόγον, ὃν ἁ Β△ ποτὶ τὰν ΕΖ. Ἐπεὶ γὰρ αἱ ΕΘ, ΚΛ κάθετοι εἰς τὸν αὐτὸν λόγον τέτμηνται κατὰ τὰ Μ, Β, δῆλον ὅτι τὸ ΛΕ τραπέζιον ποτὶ τὸ ΘΜ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΘΕ ποτὶ τὰν ΒΘ. Διὰ ταὐτὰ δὲ καὶ τῶν ἄλλων τραπεζίων ἕκαστον τῶν ἐν τῷ κύκλῳ ποθʼ ἕκαστον τῶν τραπεζίων τῶν ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΕΘ ποτὶ τὰν ΒΘ. Ἔχοντι δὲ καὶ τὰ τρίγωνα τὰ ποτὶ τοῖς Α, Γ τὰ ἐν τῷ κύκλῳ ποτὶ τὰ ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ τοῦτον τὸν λόγον ἕξει οὖν καὶ ὅλον τὸ εὐθύγραμμον τὸ ἐν τῷ ΑΕΓΖ κύκλῳ ἐγγεγραμμένον ποτὶ ὅλον τὸ ἐγγεγραμμένον εὐθύγραμμον ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ τὸν αὐτὸν λόγον, ὃν ἁ ΕΖ ποτὶ τὰν ΒΔ. Ἔχει δὲ τὸ αὐτὸ εὐθύγραμμον καὶ ποτὶ τὸ ἐν τῷ Ψ κύκλῳ ἐγγεγραμμένον τοῦτον τὸν λόγον, διότι καὶ οἱ κύκλοι τοῦτον εἶχον τὸν λόγον ἴσον ἄρα ἐστὶν τὸ εὐθύγραμμον τὸ ἐν τῷ Ψ κύκλῳ ἐγγεγραμμένον τῷ εὐθυγράμμῳ τῷ ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ ἐγγεγραμμένῳ ὅπερ ἀδύνατον μεῖζον γὰρ ἦν ὅλου τοῦ περιεχομένου χωρίου ὑπὸ τᾶς τοῦ ὀξυγωνίου τομᾶς. Ἀλλʼ ἔστω, εἰ δυνατόν, ἐλάσσων. Πάλιν δὴ δυνατὸν εἰς τὰν τοῦ ὀξυγωνίου κώνου τομὰν ἐγγράψαι πολύγωνον ἀρτιόπλευρον μεῖζον τοῦ Ψ κύκλου. Ἐγγεγράφθω οὖν, καὶ ἀπὸ τᾶν γωνιᾶν αὐτοῦ κάθετοι ἀχθεῖσαι ἐπὶ τὰν ΑΓ ἐκβεβλήσθωσαν ποτὶ τὰν τοῦ κύκλου περιφέρειαν πάλιν οὖν ἐσσεῖταί τι ἐν τῷ ΑΕ κύκλῳ εὐθύγραμμον ἐγγεγραμμένον, ὃ ἕξει ποτὶ τὸ ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ ἐγγεγραμμένον τὸν αὐτὸν λόγον, ὃν ἁ ΕΖ ποτὶ τὰν Β△. Ἐγγραφέντος δὴ καὶ εἰς τὸν Ψ κύκλον ὁμοίου αὐτῷ δειχθήσεται τὸ ἐν τῷ Ψ κύκλῳ ἐγγεγραμμένον ἴσον ἐὸν τῷ ἐν τᾷ τοῦ ὀξυγωνίου κώνου τομᾷ ἐγγεγραμμένῳ ὅπερ ἀδύνατον οὐκ ἔστιν οὖν οὐδὲ ἐλάσσων ὁ Ψ κύκλος τοῦ χωρίου τοῦ περιεχομένου ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς, Δῆλον οὖν ὅτι τὸ εἰρημένον χωρίον ποτὶ τὸν ΑΕΓΖ κύκλον τὸν αὐτὸν ἔχει λόγον, ὃν ἁ Β△ ποτὶ τὰν ΕΖ.