κδ′. Κώνου τομὴ κώνου τομῇ ἢ κύκλου περιφερείᾳ οὐ συμβάλλει οὕτως, ὥστε μέρος μέν τι εἶναι ταὐτόν, μέρος δὲ μὴ εἶναι κοινόν. εἰ γὰρ δυνατόν, κώνου τομὴ ἡ ΔΑ Β Γ κύκλου περιφερείᾳ τῇ ΕΑ Β Γ συμβαλλέτω, καὶ ἔστω αὐτῶν κοινὸν μέρος τὸ αὐτὸ τὸ ΑΒΓ, μὴ κοινὸν δὲ τὸ ΑΔ καὶ τὸ ΑΕ, καὶ εἰλήφθω ἐπ’ αὐτῶν σημεῖον τὸ Θ, καὶ ἐπεζεύχθω ἡ ΘΑ, καὶ διὰ τυχόντος σημείου τοῦ Ε τῇ ΑΘ παράλληλος ἤχθω ἡ ΔΕΓ, καὶ τετμήσθω ἡ ΑΘ δίχα κατὰ τὸ Η, καὶ διὰ τοῦ Η διάμετρος ἤχθω ἡ ΒΗΖ. ἡ ἄρα διὰ τοῦ Β παρὰ τὴν ΑΘ ἐφάψεται ἑκατέρας τῶν τομῶν καὶ παράλληλος ἔσται τῇ ΔΕΓ, καὶ ἔσται ἐν μὲν τῇ ἑτέρᾳ τομῇ ἡ ΔΖ τῇ ΖΓ ἴση, ἐν δὲ τῇ ἑτέρᾳ ἡ ΕΖ τῇ ΖΓ ἴση. ὥστε καὶ ἡ ΔΖ τῇ ΖΕ ἐστιν ἴση· ὅπερ ἀδύνατον. κε′. Κώνου τομὴ κώνου τομὴν ἢ κύκλου περιφέρειαν οὐ τέμνει κατὰ πλείονα σημεῖα τεσσάρων. εἰ γὰρ δυνατόν, τεμνέτω κατὰ πέντε τὰ Α, Β, Γ, Δ, Ε, καὶ ἔστωσαν αἱ Α, Β, Γ, Δ, Ε συμπτώσεις ἐφεξῆς μηδεμίαν παραλείπουσαι μεταξὺ αὑτῶν, καὶ ἐπεζεύχθωσαν αἱ ΑΒ, ΓΔ καὶ ἐκβεβλήσθωσαν· συμπεσοῦνται δὴ αὗται ἐκτὸς τῶν τομῶν ἐπὶ τῆς παραβολῆς καὶ ὑπερβολῆς. συμπιπτέτωσαν κατὰ τὸ Λ, καὶ ὃν μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ, ἐχέτω ἡ ΑΟ πρὸς ΟΒ, ὃν δὲ ἔχει λόγον ἡ ΔΛ πρὸς ΛΓ, ἐχέτω ἡ ΔΠ πρὸς ΠΓ. η ἄρα ἀπὸ τοῦ Π ἐπὶ τὸ Ο ἐπιζευγνυμένη ἐκβαλλομένη ἐφ’ ἑκάτερα συμπεσεῖται τῇ τομῇ, καὶ αἱ ἀπὸ τῶν συμπτώσεων ἐπὶ τὸ Λ ἐπιζευγνύμεναι ἐφάψονται τῶν τομῶν. συμπιπτέτω δὴ κατὰ τὰ Θ, Ρ, καὶ ἐπεζεύχθωσαν αἱ ΘΛ, ΛΡ· ἐφάψονται δὴ αὗται. ἡ ἄρα ΕΑ τέμνει ἑκατέραν τομήν, ἐπείπερ μεταξὺ τῶν Β, Γ σύμπτωσις οὐκ ἔστι. τεμνέτω κατὰ τὰ Μ, Η· ἔσται ἄρα διὰ μὲν τὴν ἑτέραν τομήν, ὡς ἡ ΕΛ πρὸς ΛΗ, ἡ ΕΝ πρὸς ΝΗ, διὰ δὲ τὴν ἑτέραν, ὡς ἡ ΕΛ πρὸς ΛΜ, ἡ ΕΝ πρὸς ΝΜ. τοῦτο δὲ ἀδύνατον· ὥστε καὶ τὸ ἐξ ἀρχῆς. ἐὰν δὲ αἱ ΑΒ, ΔΓ παράλληλοι ὦσιν, ἔσονται μὲν αἱ τομαὶ ἐλλείψεις ἢ κύκλου περιφέρεια. τετμήσθωσαν αἱ ΑΒ, ΓΔ δίχα κατὰ τὰ Ο, Π, καὶ ἐπεζεύχθω ἡ ΠΟ καὶ ἐκβεβλήσθω ἐφ’ ἑκάτερα· συμπεσεῖται δὴ ταῖς τομαῖς. συμπιπτέτω δὴ κατὰ τὰ Θ, Ρ. ἔσται δὴ διάμετρος τῶν τομῶν ἡ ΘΡ, τεταγμένως δὲ ἐπ’ αὐτὴν κατηγμέναι αἱ ΑΒ, ΓΔ. ἤχθω δὴ ἀπὸ τοῦ Ε παρὰ τὰς ΑΒ, ΓΔ ἡ ΕΝΜΗ· τεμεῖ ἄρα ἡ ΕΜΗ τὴν ΘΡ καὶ ἑκατέραν τῶν γραμμῶν, διότι ἑτέρα σύμπτωσις οὐκ ἔστι παρὰ τὰς Α, Β, Γ, Δ. ἔσται δὴ διὰ ταῦτα ἐν μὲν τῇ ἑτέρᾳ τομῇ ἡ ΝΜ ἴση τῇ ΕΝ, ἐν δὲ τῇ ἑτέρᾳ ἡ ΝΕ τῇ ΝΗ ἴση· ὥστε καὶ ἡ ΝΜ τῇ ΝΗ ἐστιν ἴση· ὅπερ ἀδύνατον.