ιϛ′. Τῶν αὐτῶν ὄντων ἔστω τὸ Δ σημεῖον ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης, καὶ τὰ λοιπὰ τὰ αὐτὰ γινέσθω. λέγω, ὅτι ἡ ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἐπιζευγνυμένη ἐκβαλλομένη συμπεσεῖται τῇ ἀντικειμένῃ τομῇ, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς. ἔστω γὰρ τὰ αὐτὰ, καὶ τὸ Δ σημεῖον ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης, καὶ ἤχθω ἀπὸ τοῦ Δ ἐφαπτομένη τῆς Α τομῆς ἡ ΔΕ, καὶ ἐπεζεύχθω ἡ ΕΖ καὶ ἐκβαλλομένη, εἰ δυνατόν, μὴ ἐρχέσθω ἐπὶ τὸ Γ, ἀλλ’ ἐπὶ τὸ Η. ἔσται δή, ὡς ἡ ΑΗ πρὸς ΗΒ, ἡ ΑΔ πρὸς ΔΒ· ὅπερ ἄτοπον· ὑπόκειται γάρ, ὡς ἡ ΑΔ πρὸς ΔΒ, ἡ ΑΓ πρὸς ΓΒ. ιζ′. Τῶν αὐτῶν ὄντων ἔστω τὸ Δ σημεῖον ἐπί τινος τῶν ἀσυμπτώτων. λέγω, ὅτι ἡ ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἀγομένη παράλληλος ἔσται τῇ ἀσυμπτώτῳ, ἐφ’ ἧς ἐστι τὸ σημεῖον. ἔστωσαν τὰ αὐτὰ ἔσται τῇ ἀσυμπτώτῳ, ἔστωσαν τὰ αὐτὰ τοῖς ἔμπροσθεν, τὸ δὲ Δ σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων, καὶ ἤχθω διὰ τοῦ Ζ παράλληλος, καὶ εἰ δυνατόν, μὴ πιπτέτω ἐπὶ τὸ Γ, ἀλλ’ ἐπὶ τὸ Η. ἔσται δή, ὡς ἡ ΑΔ πρὸς ΔΒ, ἡ ΑΗ πρὸς ΗΒ· ὅπερ ἄτοπον. ἡ ἄρα ἀπὸ τοῦ Ζ παρὰ τὴν ἀσύμπτωτον ἐπὶ τὸ Γ πίπτει.