ια′. Τῶν αὐτῶν ὄντων ἐὰν αἱ τῆς μιᾶς συμπτώσεις μὴ περιέχωσι τὰς τῆς ἑτέρας συμπτώσεις, τὸ μὲν Δ σημεῖον ἐντὸς ἔσται τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας, καὶ ἡ καταγραφὴ καὶ ἡ ἀπόδειξις ἡ αὐτὴ τῷ θ̅. ιβ′. Τῶν αὐτῶν ὄντων ἐὰν περιέχωσιν αἱ τῆς μιᾶς εὐθείας συμπτώσεις τὰς τῆς ἑτέρας, καὶ τὸ ληφθὲν σημεῖον ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης ᾖ, ἡ διὰ τῶν διαιρέσεων ἀγομένη εὐθεῖα ἐκβαλλομένη τῇ ἀντικειμένῃ τομῇ συμπεσεῖται, καὶ αἱ ἀπὸ τῶν συμπτώσεων ἐπὶ τὸ Δ σημεῖον ἀγόμεναι εὐθεῖαι ἐφάψονται τῶν ἀντικειμένων. ἔστω ὑπερβολὴ ἡ ΕΗ, ἀσύμπτωτοι δὲ αἱ ΝΞ, Ο Π, καὶ κέντρον τὸ Ρ, καὶ τὸ Δ σημεῖον ἔστω ἐν τῇ ὑπὸ ΞΡΠ γωνίᾳ, καὶ ἤχθωσαν αἱ ΔΕ, ΔΖ τέμνουσαι τὴν ὑπερβολὴν ἑκατέρα κατὰ δύο σημεῖα, καὶ περιεχέσθω τὰ E, Θ ὑπὸ τῶν Z, H, καὶ ἔστω, ὡς μὲν ἡ EΔ πρὸς ΔΘ, ἡ ΕΚ πρὸς ΚΘ, ὡς δὲ ἡ ΖΔ πρὸς ΔΗ, ἡ ΖΛ πρὸς ΛH. δεικτέον, ὅτι ἡ διὰ τῶν K, Λ συμπεσεῖταί τε τῇ EZ τομῇ καὶ τῇ ἀντικειμένῃ, καὶ αἱ ἀπὸ τῶν συμπτώσεων ἐπὶ τὸ Δ ἐφάψονται τῶν τομῶν. ἔστω δὴ ἀντικειμένη ἡ Μ, καὶ ἀπὸ τοῦ Δ ἤχθωσαν ἐφαπτόμεναι τῶν τομῶν αἱ Δ Μ, ΔΣ, καὶ ἐπιζευχθεῖσα ἡ ΜΣ, εἰ δυνατόν, μὴ ἐρχέσθω διὰ τῶν Κ, Λ, ἀλλ’ ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι’ οὐδετέρου. ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ τὸ Χ. ἔστιν ἄρα, ὡς ἡ ΖΔ πρὸς ΔΗ, ἡ ΧΖ πρὸς ΧΗ· ὅπερ ἄτοπον· ὑπόκειται γάρ, ὡς ἡ ΖΔ πρὸς ΔΗ, ἡ ΖΛ πρὸς ΛΗ. ἐὰν δὲ μηδὲ δι’ ἑτέρου τῶν Κ, Λ ἔρχηται ἡ ΜΣ, ἐφ’ ἑκατέρας τῶν ΕΔ, ΔΖ τὸ ἀδύνατον συμβαίνει. ιγ′. Τῶν αὐτῶν ὄντων ἐὰν τὸ Δ σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων ᾖ, καὶ τὰ λοιπὰ τὰ αὐτὰ ὑπάρχῃ, ἡ διὰ τῶν διαιρέσεων ἀγομένη παράλληλος ἔσται τῇ ἀσυμπτώτῳ, ἐφ’ ἧς ἐστι τὸ σημεῖον, καὶ ἐκβαλλομένη συμπεσεῖται τῇ τομῇ, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ σημεῖον ἀγομένη ἐφάψεται τῆς τομῆς. ἔστω γὰρ ὑπερβολὴ καὶ ἀσύμπτωτοι, καὶ εἰλήφθω ἐπὶ μιᾶς τῶν ἀσυμπτώτων τὸ Δ, καὶ διήχθωσαν αἱ εὐθεῖαι καὶ διῃρήσθωσαν, ὡς εἴρηται, καὶ ἤχθω ἀπὸ τοῦ Δ ἐφαπτομένη τῆς τομῆς ἡ ΔΒ. λέγω, ὅτι ἡ ἀπὸ τοῦ Β παρὰ τὴν ΠΟ ἀγομένη ἥξει διὰ τῶν Κ, Λ. εἰ γαρ μή, ἤτοι διὰ τοῦ ἑνὸς αὐτῶν ἐλεύσεται ἢ δι’ οὐδετέρου. ἐρχέσθω διὰ μόνου τοῦ Κ. ἔστιν ἄρα, ὡς ἡ ΖΔ προς ΔΗ, ἡ ΖΧ πρὸς ΧΗ· ὅπερ ἄτοπον. οὐκ ἄρα ἡ ἀπὸ τοῦ Β παρὰ τὴν ΠΟ ἀγομένη διὰ μόνου τοῦ Κ ἐλεύσεται· δι’ ἀμφοτέρων ἄρα. ιδ′. Τῶν αὐτῶν ὄντων ἐὰν τὸ Δ σημεῖον ἐπὶ μιᾶς ᾖ τῶν ἀσυμπτώτων, καὶ ἡ μὲν ΔΕ τέμνῃ τὴν τομὴν κατὰ δύο σημεῖα, ἡ δὲ ΔΗ κατὰ μόνον τὸ Η παράλληλος οὖσα τῇ ἑτέρᾳ τῶν ἀσυμπτώτων, καὶ γένηται, ὡς ἡ ΔΕ πρὸς ΔΘ, ἡ ΕΚ πρὸς ΚΘ, τῇ δὲ ΔΗ ἴση ἐπ’ εὐθείας τεθῇ ἡ ΗΛ, ἡ διὰ τῶν Κ, Λ σημείων ἀγομένη παράλληλός τε ἔσται τῇ ἀσυμπτώτῳ καὶ συμπεσεῖται τῇ τομῇ, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς τομῆς. ὁμοίως γὰρ τῷ προειρημένῳ ἀγαγὼν τὴν Δ Β ἐφαπτομένην λέγω, ὅτι ἡ ἀπὸ τοῦ Β παρὰ τὴν ΠΟ ἀσύμπτωτον ἀγομένη τοῦ Β παρὰ τὴν ΠΟ ἀσύμπτωτον ἀγομένη ἥξει διὰ τῶν Κ, Λ σημείων. εἰ οὖν διὰ τοῦ Κ μόνου ἥξει, οὐκ ἔσται ἡ ΔΗ τῇ ΗΛ ἴση· ὅπερ ἄτοπον. εἰ δὲ διὰ τοῦ Λ μόνου, οὐκ ἔσται, ὡς ἡ ΕΔ πρὸς ΔΘ, ἡ ΕΚ πρὸς ΚΘ. εἰ δὲ μήτε διὰ τοῦ Κ μήτε διὰ τοῦ Λ, κατ’ ἀμφότερα συμβήσεται τὸ ἄτοπον. δι’ ἀμφοτέρων ἄρα ἐλεύσεται. ιε′. Ἐὰν ἐν ἀντικειμέναις ληφθῇ τι σημεῖον μεταξὺ τῶν δύο τομῶν, καὶ ἀπ’ αὐτοῦ ἡ μὲν ἐφάπτηται μιᾶς τῶν ἀντικειμένων, ἡ δὲ τέμνῃ ἑκατέραν τῶν ἀντικειμένων, καὶ ὡς ἔχει ἡ μεταξὺ τῆς ἑτέρας τομῆς, ἧς οὐκ ἐφάπτεται ἡ εὐθεῖα, καὶ τοῦ σημείου πρὸς τὴν μεταξὺ τοῦ σημείου καὶ τῆς ἑτέρας τομῆς, οὕτως ἔχῃ μείζων τις εὐθεῖα τῆς μεταξὺ τῶν τομῶν πρὸς τὴν ὑπεροχὴν αὐτῆς κειμένην ἐπ’ εὐθείας τε καὶ πρὸς τῷ αὐτῷ πέρατι τῇ ὁμολόγῳ, ἡ ἀπὸ τοῦ πέρατος τῆς μείζονος εὐθείας ἐπὶ τὴν ἁφὴν ἀγομένη συμπεσεῖται τῇ τομῇ, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ ληφθὲν σημεῖον ἀγομένη ἐφάπτεται τῆς τομῆς. ἔστωσαν ἀντικείμεναι αἱ Α, Β, καὶ εἰλήφθω τι σημεῖον μεταξὺ τῶν τομῶν τὸ Δ ἐντὸς τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας, καὶ ἀπ’ αὐτοῦ ἡ μὲν ΔΖ διήχθω ἐφαπτομένη, ἡ δὲ ΑΔΒ τέμνουσα τὰς τομάς, καὶ ὃν ἔχει λόγον ἡ ΑΔ πρὸς ΔΒ, ἐχέτω ἡ ΑΓ πρὸς ΓΒ. δεικτέον, ὅτι ἡ ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἐκβαλλομένη συμπεσεῖται τῇ τομῇ, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἀγομένη ἐφάψεται τῆς τομῆς. ἐπεὶ γὰρ τὸ Δ σημεῖον ἐντός ἐστι τῆς περιεχούσης τὴν τομὴν γωνίας, δυνατόν ἐστι καὶ ἑτέραν ἐφαπτομένην ἀγαγεῖν ἀπὸ τοῦ Δ. ἤχθω ἡ ΔΕ, καὶ ἐπιζευχθεῖσα ἡ Ζ Ε ἐρχέσθω, εἰ δυνατόν, μὴ διὰ τοῦ Γ, ἀλλὰ διὰ τοῦ Η. ἔσται δή, ὡς ἡ ΑΔ πρὸς ΔΒ, ἡ ΑΗ πρὸς ΗΒ· ὅπερ ἄτοπον· ὑπόκειται γάρ, ὡς ἡ ΑΔ πρὸς ΔΒ, ἡ ΑΓ πρὸς ΓΒ.