Ἔτι δ' ἄτοπον ἄν εἴη διὰ μὲν τὸν Ζήνωνος λόγον παραπεπεῖσθαί τινας ἀτόμους ποιεῖν γραμμάς, τῷ μὴ ἔχειν ἀντειπεῖν, διὰ δὲ τῆς εὐθείας εἰς τὴν ἡμιόλιον κίνησιν, ἢν ἀναγκαῖον εὐθύς τέμνειν ἀπείρων μεταξὺ πιπτουσῶν περιφερειῶν καὶ διαστημάτων ὄντων, καὶ πάλιν διὰ τὴν τῶν ἴσων κύκλων εὔπειστον, ὅτι ἀνάγκη ἂν ὅτι κινηθῇ, μεῖζον ἡμικύκλιον κινεῖσθαι, καὶ ὅσα ἄλλα τοιαῦτα τεθεώρηται περὶ τὰς γραμμὰς μὴ οἶόν τε ἐνδέχεσθαι τοιαύτην δή τινα γενέσθαι κίνησιν ὥστ’ ἐφ’ ἑκάστην τῶν μεταξὺ μὴ πίπτειν πρότερον· πολὺ γὰρ ταῦτα μᾶλλον ὁμολογούμενα ἐκείνων. Ὄτι μὲν οὖν ἔκ γε τῶν εἰρημένων λόγων οὔτ’ ἀναγκαῖον ἀτόμους εἶναι γραμμὰς οὔτε πιθανόν, φανερόν. Ἔτι δὲ καὶ ἐκ τῶνδε γένοιτ’ ἂν φανερώτερον. Πρῶτον μὲν ἐκ τῶν ἐν τοῖς μαθήμασι δεικνυμένων καὶ τιθεμένων, ἃ οὐ δίκαιον ἢ πιστοτέροις λόγοις κινεῖν. Οὔτς γὰρ ὁ τῆς γραμμῆς οὔτε ὁ τῆς εὐθείας ὅρος ἐφαρμόσει τῇ ἀτόμῳ διὰ τὸ μήτε μεταξὺ τινῶν εἶναι μήτ’ ἔχειν μέσον. Ἔπειτα πᾶσαι αἱ γραμμαὶ σύμμετροι ἔσονται. Πᾶσαι γὰρ ὑπὸ τῶν ἀτόμων μετρηθήσονται, αἵ τε μήκει σύμμετροι καὶ αἱ δυνάμει. Αἱ δὲ ἄτομοι σύμμετροι πᾶσαι μήκει· ἴσαι γάρ· ὥστε καὶ δυνάμει. Εἰ δὲ τοῦτο, διαιρετὸν ἔσται τὸ τετράγωνον. Ἔτι εἰ ἡ περὶ τὴν μείζω τὸ πλάτος ποιεῖ παραβαλλομένη, τὸ ἴσον τῶν ἀπὸ τῆς ἀτόμου καὶ τῆς ποδιαίας παραβαλλομένων περὶ τὴν δίπουν ἔλαττον ποιήσει τὸ πλάτος τῆς ἀμεροῦς· ἔσται ἔλαττον τὸ περὶ τῆς ἀτόμου. Ἔτι εἰ ἐκ τριῶν δοθεισῶν εὐθειῶν συνίσταται τρίγωνον, καὶ ἐκ τῶν ἀτόμων συσταθήσεται. Ἐν ἅπαντι δὲ ἰσοπλεύρῳ ἡ κάθετος ἐπὶ μέσην πίπτει, ὥστε καὶ ἐπὶ τὴν ἄτομον. Ἔτι εἰ τὸ τετράγωνον τῶν ἁμερῶν διὰ μέσου ἐμπεσούσης καὶ καθέτου ἀχθείσης, ἡ τοῦ τετραγώνου πλευρὰ τὴν κάθετον δύναται καὶ τὴν ἡμίσειαν τῆς διαμέτρου, ὥστε οὐκ ἐλαχίστη.